-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
372 lines (333 loc) · 13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from cProfile import label
import copy
import warnings
from matplotlib.style import available
from numpy import iterable
import torch
from torch import nn
__doc__ = """
A DCGAN is a direct extension of the GAN, except that it
explicitly uses convolutional and convolutional-transpose layers in the
discriminator and generator, respectively. It was first described by
Radford et. al. in the paper [Unsupervised Representation Learning With
Deep Convolutional Generative Adversarial
Networks](https://arxiv.org/pdf/1511.06434.pdf). The discriminator is
made up of strided
[convolution](https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d)
layers, [batch
norm](https://pytorch.org/docs/stable/nn.html#torch.nn.BatchNorm2d)
layers, and
[LeakyReLU](https://pytorch.org/docs/stable/nn.html#torch.nn.LeakyReLU)
activations. The input is a 3x64x64 input image and the output is a
scalar probability that the input is from the real data distribution.
The generator is comprised of
[convolutional-transpose](https://pytorch.org/docs/stable/nn.html#torch.nn.ConvTranspose2d)
layers, batch norm layers, and
[ReLU](https://pytorch.org/docs/stable/nn.html#relu) activations. The
input is a latent vector, $z$, that is drawn from a standard normal
distribution and the output is a 3x64x64 RGB image. The strided
conv-transpose layers allow the latent vector to be transformed into a
volume with the same shape as an image. In the paper, the authors also
give some tips about how to setup the optimizers, how to calculate the
loss functions, and how to initialize the model weights, all of which
will be explained in the coming sections.
"""
def weights_init(m):
"""
Initialize the weights of a module.
From the DCGAN paper, the authors specify that all model weights shall
be randomly initialized from a Normal distribution with `mean=0`,
`stdev=0.02`. The `weights_init` function takes an initialized model as
input and reinitializes all convolutional, convolutional-transpose, and
batch normalization layers to meet this criteria. This function is
applied to the models immediately after initialization.
Args:
m (nn.Module): The module to initialize the weights for.
Returns:
None
"""
classname = m.__class__.__name__
if classname.find("Conv") != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(
self,
ngpu: int,
number_of_generators: int,
shared_layers: int,
nz: int,
ngf: int,
nc: int,
):
"""
Initializes the Generator class.
Args:
ngpu (int): Number of GPUs to use.
number_of_generators (int): Number of classes for conditional generation.
number_shared_layers (int, optional): Number of shared layers (not implemented yet).
nz (int, optional): Size of the input noise vector.
ngf (int, optional): Number of generator filters in the first layer.
nc (int, optional): Number of channels in the output image.
the tested values are:
number_shared_layers: int = 0,
nz: int = 100,
ngf: int = 64,
nc: int = 1,
"""
super(Generator, self).__init__()
self.ngpu = ngpu
self.number_of_generators = number_of_generators
self.shared_layers = shared_layers
self.nz = nz
self.ngf = ngf
self.nc = nc
available_layers = [
[
# input is Z, going into a convolution
nn.ConvTranspose2d(
in_channels=nz,
out_channels=ngf * 8,
kernel_size=4,
stride=1,
padding=0,
bias=False,
),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
nn.Dropout(0.2),
],
[ # state size. ``(ngf*8) x 4 x 4``
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.Dropout(0.2),
],
[ # state size. ``(ngf*4) x 8 x 8``
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.Dropout(0.3),
],
[ # state size. ``(ngf*2) x 16 x 16``
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.Dropout(0.4),
],
[ # state size. ``(ngf) x 32 x 32``
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh(),
# # state size. ``(nc) x 64 x 64`]
# nn.ReLU(),
],
]
if shared_layers >= len(available_layers):
raise ValueError(
f"shared_layers should be less than {len(available_layers)} but got {shared_layers}"
)
tmp = []
for _ in range(shared_layers):
tmp.extend(available_layers.pop(0))
self.shared_layers = nn.Sequential(*tmp)
tmp = []
# we need to flatten the available_layers list
while available_layers:
tmp.extend(available_layers.pop(0))
self.models: list[nn.Sequential] = [
copy.deepcopy(nn.Sequential(*tmp)) for _ in range(number_of_generators)
]
for i, model in enumerate(self.models):
self.add_module(f"model_{i}", model)
# print(f"model_{i}", model, "-----", sep="\n")
def forward(self, inputs, labels: torch.Tensor):
"""
:param inputs: The input tensor
:param labels: The labels tensor (they must be some integers)
"""
if iterable(labels):
# t = [
# self.models[lbl.item()](inp.unsqueeze(0)).squeeze(0)
# for lbl, inp in zip(labels, inputs, strict=True)
# ]
# raise NotImplementedError(
# "labels should be a tensor, iters are not supported yet"
# )
t = []
if len(labels) != len(inputs):
warnings.warn(
f"The length of labels and inputs are not equal, {len(labels)=} != {len(inputs)=}",
stacklevel=3,
)
for lbl, inp in zip(labels, inputs):
shared_layers_out = self.shared_layers(inp.unsqueeze(0))
t.append(self.models[lbl.item()](shared_layers_out).squeeze(0))
return torch.stack(t)
return self.models[labels.item()](self.shared_layers(inputs))
def generate(self, num_samples: int, labels: torch.Tensor = None):
"""
Generate samples from the generator.
Args:
num_samples (int): Number of samples to generate.
labels (torch.Tensor, optional): The labels tensor. if None, it will be randomly generated. Defaults to None.
Returns:
torch.Tensor: The generated samples.
"""
if labels is None:
labels = torch.randint(0, self.number_of_generators, (num_samples,))
imgs = [self(torch.randn(1, self.nz), lbl) for lbl in labels]
return torch.stack(imgs)
def make_sample_input(self, num_samples: int, device: torch.device | str = None):
"""
Make a sample input for the generator.
for instance you can say:
```
labels = ...
assert len(labels) == 5 # for instance
gen = Generator(...)
gen(gen.make_sample_input(5), labels)
```
it will generate 5 random images.
"""
if device:
return torch.randn(num_samples, self.nz, 1, 1, device=device)
return torch.randn(num_samples, self.nz, 1, 1)
def make_sample_labels(self, num_samples: int, device: torch.device | str = None):
"""
Make a sample labels for the generator.
for instance you can say:
```
labels = netG.make_sample_labels(5)
assert len(labels) == 5
gen = Generator(...)
gen(gen.make_sample_input(5), labels)
```
it will generate 5 random images.
"""
if device:
return torch.randint(
0, self.number_of_generators, (num_samples,), device=device
)
return torch.randint(0, self.number_of_generators, (num_samples,))
class Discriminator(nn.Module):
def __init__(self, ngpu, nc=1, ndf=64):
"""
Initializes the Discriminator class.
Args:
ngpu (int): Number of GPUs to use.
nc (int, optional): Number of input channels. Defaults to 1.
ndf (int, optional): Number of discriminator filters. Defaults to 64.
"""
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.nc = nc
self.ndf = ndf
self.main = nn.Sequential(
# input is ``(nc) x 64 x 64``
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. ``(ndf) x 32 x 32``
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. ``(ndf*2) x 16 x 16``
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. ``(ndf*4) x 8 x 8``
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. ``(ndf*8) x 4 x 4``
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid(),
)
def forward(self, input):
out = self.main(input)
return out
def create_models(
ngpu: int,
nlabels: int,
device: torch.device | str,
nz: int,
ngf: int,
nc: int,
ndf: int,
shared_layers: int,
verbose: bool = False,
):
"""
Create the generator and discriminator models for GAN training.
Args:
ngpu (int): Number of GPUs available for training.
nlabels (int): Number of labels for conditional GAN.
device (torch.device | str, optional): Device to use for training. If None, it will be automatically selected based on GPU availability. Defaults to None.
number_shared_layers (int, optional): Number of shared layers between generator and discriminator. Defaults to 0.
nz (int, optional): Size of the input noise vector. Defaults to 100.
ngf (int, optional): Number of generator filters. Defaults to 64.
nc (int, optional): Number of channels. Defaults to 1. used as the output of the generator and the input of the discriminator.
ndf (int, optional): Number of discriminator filters. Defaults to 64.
verbose (bool, optional): Whether to print the model architectures. Defaults to False.
Returns:
Generator, Discriminator: The generator and discriminator models.
"""
if ngpu > 1:
raise NotImplementedError("Multi-GPU is not implemented yet")
if device is None:
device = torch.device(
"cuda" if (torch.cuda.is_available() and ngpu > 0) else "cpu"
)
elif isinstance(device, str):
device = torch.device(device)
netG = Generator(
ngpu,
number_of_generators=nlabels,
shared_layers=shared_layers,
nz=nz,
ngf=ngf,
nc=nc,
).to(device)
# Handle multi-GPU if desired
# if (device.type == "cuda") and (ngpu > 1):
# netG = nn.DataParallel(netG, list(range(ngpu)))
# Apply the ``weights_init`` function to randomly initialize all weights
# to ``mean=0``, ``stdev=0.02``.
netG.apply(weights_init)
# Create the Discriminator
netD = Discriminator(ngpu, nc=nc, ndf=ndf).to(device)
# Handle multi-GPU if desired
# if (device.type == "cuda") and (ngpu > 1):
# netD = nn.DataParallel(netD, list(range(ngpu)))
# Apply the ``weights_init`` function to randomly initialize all weights
# like this: ``to mean=0, stdev=0.2``.
netD.apply(weights_init)
if verbose:
print(netG)
print(netD)
return netG, netD
if __name__ == "__main__":
# this is just a test
netG, netD = create_models(
nc=1,
ngf=64,
ndf=64,
nlabels=(nlabels := 10),
nz=(nz := 100),
ngpu=0,
shared_layers=3,
device="cpu",
verbose=True,
)
print("netG", netG, "-----", sep="\n")
print("netD", netD, "-----", sep="\n")
print(
(
fake_imgs := netG(
torch.randn((batch_size := 3), nz, 1, 1),
torch.randint(0, nlabels, (batch_size,)),
)
)
)
print(netD(fake_imgs))