-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
491 lines (441 loc) · 19.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import gc
import os
from datetime import datetime
import pickle
from typing import Optional
from tqdm import tqdm
from torchvision.transforms import v2 as transforms
from torch import nn, optim
import torch
from data import MnistDataset
from evaluate import DATAFILE, Evaluate
from logger import Logger
from model import create_models
class Main:
logger: Logger
device: torch.device
def __init__(
self,
data_path: str = "./data",
batch_size: int = 128,
ngpu: int = 1,
nz: int = 100,
ngf: int = 64,
nc: int = 1,
ndf: int = 64,
lr: float = 0.0002,
transform: bool = True,
beta1: float = 0.5,
shared_layers: int = 0,
device: Optional[str] = None,
workers: int = 1,
):
"""
Initializes the GANsModeCollapse class.
Args:
data_path (str): The path to the data directory. Default is "./data".
batch_size (int): The batch size for training. Default is 64.
ngpu (int): The number of GPUs to use. Default is 1.
nz (int): The size of the input noise vector. Default is 100.
ngf (int): The number of filters in the generator. Default is 64.
nc (int): The number of channels in the input image. Default is 1.
ndf (int): The number of filters in the discriminator. Default is 64.
lr (float): The learning rate for the Adam optimizer. Default is 0.0002.
transform (bool): Whether to apply data transformations. Default is True.
beta1 (float): The beta1 parameter for the Adam optimizer. Default is 0.5.
device (str): The device to use for training. if None, it will be set to "cuda:0" if a GPU is available, otherwise "cpu". Default is None.
workers (int): The number of worker threads for data loading. Default is 1.
"""
# TODO: Add id as the argument to save the model with the id in the filename
# Dont allow to run the same id again, if the id exists, raise an error, if id==-1 then generate a new id
# TODO: Add a json file to save each run parameters for each id
# TODO: Change the output format to use the id in the filename
self.data_file = DATAFILE
self.checkpoint_dir = None
self.run_id = None
self.shared_layers = shared_layers
self.ngpu = ngpu
if transform:
# TODO: Try to use transforms.RandomApply
transform_funcs = transforms.Compose(
[
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
transforms.RandomRotation(degrees=(-20, 20)),
transforms.Resize(size=(64, 64)),
transforms.RandomCrop(size=(50, 50)),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
transforms.Resize(size=(64, 64)),
transforms.Normalize((0.5,), (0.5,)),
]
)
self.data_path = data_path
self.batch_size = batch_size
self.dataset = MnistDataset(
data_path, batch_size=batch_size, transform=transform_funcs
)
if device is None:
self.device = torch.device(
"cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu"
)
else:
self.device = torch.device(device)
# self.device = torch.device("cuda:0")
self.nz = nz
self.netG, self.netD = create_models(
ngpu=ngpu,
nlabels=len(self.dataset.all_classes),
nz=nz,
ngf=ngf,
nc=nc,
ndf=ndf,
shared_layers=shared_layers,
device=self.device,
)
self.criterion = nn.BCELoss()
print("Using device:", self.device)
self.netG.to(self.device)
self.netD.to(self.device)
# Setup Adam optimizers for both G and D
self.optimizerD = optim.Adam(
self.netD.parameters(), lr=lr, betas=(beta1, 0.999)
)
self.optimizerG = optim.Adam(
self.netG.parameters(), lr=lr, betas=(beta1, 0.999)
)
def train(
self,
num_epochs: int = 5,
checkpoint_dir: str | os.PathLike = None,
generate_images_per_epoch: int = 10,
run_id: int = -1,
continue_training: bool = False,
use_wandb: bool = True,
):
"""
Trains the GAN model for a specified number of epochs.
Args:
num_epochs (int): The number of epochs to train the model (default: 5).
checkpoint_dir (str | os.PathLike): The directory to save checkpoints (default: "./checkpoints").
generate_images_per_epoch (int): The number of images to generate per epoch (default: 10).
run_id (int): The ID of the current run (default: -1).
continue_training (bool): Whether to continue training from the "run_id" (default: False).
use_wandb (bool): Whether to use Weights & Biases for logging (default: True).
Raises:
ValueError: If the specified run_id is greater than the last run ID found in the checkpoint directory.
Returns:
None
"""
logger = Logger(
log_folder=checkpoint_dir,
run_id=run_id,
resume=continue_training,
use_wandb=use_wandb,
)
if not continue_training:
# last_run_id = self.find_last_run_id()
# if run_id == -1:
# self.run_id = last_run_id + 1
# # if run_id is -1, then we should generate a new id
# elif run_id <= last_run_id:
# self.run_id = run_id
# else:
# raise ValueError(
# f"run_id should be less than or equal to {last_run_id}, got {run_id},"
# f"for more info, please check the {os.path.join(checkpoint_dir, f'{self.data_file}.json')} file."
# )
# self["num_epochs"] = num_epochs
# self["ngpu"] = self.ngpu
# self["nlabels"] = len(self.dataset.all_classes)
# self["generate_images_per_epoch"] = generate_images_per_epoch
# self["batch_size"] = self.batch_size
# self["shared_layers"] = self.shared_layers
# self["nz"] = self.nz
# self["ngf"] = self.netG.ngf
# self["nc"] = self.netG.nc
# self["ndf"] = self.netD.ndf
# self["lr"] = self.optimizerD.param_groups[0]["lr"]
# self["beta1"] = self.optimizerD.param_groups[0]["betas"][0]
# self["device"] = self.device.type
# print(f"Starting training for run_id {self.run_id}...")
logger["num_epochs"] = num_epochs
logger["ngpu"] = self.ngpu
logger["nlabels"] = len(self.dataset.all_classes)
logger["generate_images_per_epoch"] = generate_images_per_epoch
logger["batch_size"] = self.batch_size
logger["shared_layers"] = self.shared_layers
logger["nz"] = self.nz
logger["ngf"] = self.netG.ngf
logger["nc"] = self.netG.nc
logger["ndf"] = self.netD.ndf
logger["lr"] = self.optimizerD.param_groups[0]["lr"]
logger["beta1"] = self.optimizerD.param_groups[0]["betas"][0]
logger["device"] = self.device.type
else:
# if we want to continue training, we should load the last model and optimizer states
# if run_id == -1:
# run_id = self.find_last_run_id(create_dict=False)
# data_json = self.load_run_json(run_id)
# if data_json is None:
# raise ValueError(f"Can't find the run_id {run_id} in the data file.")
# self.run_id = run_id
assert (
(currenct_epoch := len(logger.get_files("g_files")))
== len(logger.get_files("d_files"))
== len(logger.get_files("v_files"))
), "The number of files should be the same."
num_epochs = logger["num_epochs"] - currenct_epoch
if num_epochs == 0:
raise ValueError(
f"Training for {run_id} has finished with {logger.get('num_epochs')} epochs."
)
# check if all hyperparameters are the same
assert logger.get("ngpu") == self.ngpu
assert logger.get("nlabels") == len(self.dataset.all_classes)
assert logger.get("generate_images_per_epoch") == generate_images_per_epoch
assert logger.get("batch_size") == self.batch_size
assert logger.get("shared_layers") == self.shared_layers
assert logger.get("nz") == self.nz
assert logger.get("ngf") == self.netG.ngf
assert logger.get("nc") == self.netG.nc
assert logger.get("ndf") == self.netD.ndf
assert logger.get("lr") == self.optimizerD.param_groups[0]["lr"]
assert logger.get("beta1") == self.optimizerD.param_groups[0]["betas"][0]
assert logger.get("device") == self.device.type
# load the model
self.netG.load_state_dict(
torch.load(
os.path.join(
checkpoint_dir, logger.get_files("g_files")[-1].file_path
)
)
)
self.netD.load_state_dict(
torch.load(
os.path.join(
checkpoint_dir, logger.get_files("d_files")[-1].file_path
)
)
)
self.optimizerG.load_state_dict(
torch.load(
os.path.join(
checkpoint_dir, logger.get_files("g_files")[-1].file_path
)
)
)
self.optimizerD.load_state_dict(
torch.load(
os.path.join(
checkpoint_dir, logger.get_files("d_files")[-1].file_path
)
)
)
real_label = 1.0
fake_label = 0.0
# after each `step` batches, generate some images using `fixed_noise` and save them in the `imgs` list
# fixed_noise = torch.randn(
# generate_images_per_epoch, self.nz, 1, 1, device=self.device
# )
fixed_noise = self.netG.make_sample_input(self.batch_size, device=self.device)
step = len(self.dataset) // generate_images_per_epoch
all_labels = torch.tensor(sorted(self.dataset.all_classes), device=self.device)
imgs = []
g_losses = []
d_losses = []
for epoch in range(num_epochs):
retry = 5
# For each batch in the dataloader
for i, (data, lbl) in enumerate(tqdm(self.dataset)):
try:
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
## Train with all-real batch
self.netD.zero_grad()
# Format batch
real_cpu = data.to(self.device)
b_size = real_cpu.size(0)
assert (
b_size == self.batch_size
), f"Batch size is {b_size} but expected {self.batch_size}"
label = torch.full(
(b_size,), real_label, dtype=torch.float, device=self.device
)
output = self.netD(real_cpu).view(-1)
errD_real = self.criterion(output, label)
errD_real.backward()
# D_x = output.mean().item()
# can be used for further analysis (if needed)
## Train with all-fake batch
# noise = torch.randn(b_size, self.nz, 1, 1, device=self.device)
fake = self.netG(
self.netG.make_sample_input(b_size, device=self.device), lbl
)
label.fill_(fake_label)
# Classify all fake batch with Discriminator
output = self.netD(fake.detach()).view(-1)
# Calculate Discriminator's loss on the all-fake batch
errD_fake = self.criterion(output, label)
errD_fake.backward()
# D_G_z1 = output.mean().item()
# can be used for further analysis (if needed)
errD = errD_real + errD_fake
self.optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
self.netG.zero_grad()
# fake labels are real for generator cost
label.fill_(real_label)
# Since we just updated D, perform another forward pass of all-fake batch through D
output = self.netD(fake).view(-1)
# Calculate G's loss based on this output
errG = self.criterion(output, label)
errG.backward()
# D_G_z2 = output.mean().item()
# can be used for further analysis (if needed)
self.optimizerG.step()
# Save Losses for plotting later
g_losses.append(errG.item())
d_losses.append(errD.item())
logger.log("g_loss", errG.item())
logger.log("d_loss", errD.item())
# end of one batch
except Exception as e:
print(f"Exception occured in batch {i}, {e}")
gc.collect()
if (retry := retry - 1) == 0:
raise e
# torch.cuda.empty_cache()
# end of one epoch
# Check how the generator is doing by saving G's output on fixed_noise
if i % step == 0:
# start of the step
with torch.no_grad():
fake = self.netG(fixed_noise, all_labels).detach().cpu()
imgs.append(fake)
logger.log("fid", Evaluate.fid(device=self.device, netG=self.netG))
is_mean, is_std = Evaluate.inception_score(
device=self.device, netG=self.netG
)
logger.log("is_mean", is_mean.item())
logger.log("is_std", is_std.item())
if checkpoint_dir:
self.save_checkpoint(
epoch,
checkpoint_dir,
logger,
vars={"g_losses": g_losses, "d_losses": d_losses, "imgs": imgs},
)
self.checkpoint_dir = None
# def __setitem__(self, key, value):
# """
# we will save a file with name of "{self.data_file}.json" in the checkpoint_dir,
# the keys are "run_{self.run_id}" and the values are the key-value pairs passed to this function.
# """
# if self.checkpoint_dir is None:
# return
# new_value = {key: value}
# with open(os.path.join(self.current_data_file), "r+") as f:
# current_values = json.load(f)
# the_key = f"run_{self.run_id}"
# assert isinstance(current_values, dict), f"Bad data: {current_values}"
# assert (
# the_key in current_values
# ), f"We can't find {the_key} in the data file ({self.current_data_file})."
# current_values[the_key].update(new_value)
# f.seek(0)
# json.dump(current_values, f)
# def __getitem__(self, key):
# if self.checkpoint_dir is None:
# return
# with open(os.path.join(self.current_data_file), "r") as f:
# return json.load(f)[f"run_{self.run_id}"].get(key)
# def find_last_run_id(self, create_dict: bool = True):
# """
# Finds the last run ID from the data file and optionally creates a new dictionary entry.
# If no data file(self.current_data_file) exists, it will return 0.
# Args:
# create_dict (bool, optional): Whether to create a new dictionary entry. Defaults to True.
# Returns:
# int: The last run ID found in the data file.
# """
# if not os.path.exists(self.current_data_file):
# print(f"Creating a new data file: {self.current_data_file=}")
# data = {}
# last_id = 0
# else:
# with open(self.current_data_file, "r") as f:
# data = json.load(f)
# # note that the keys are in the format of "run_{id}"
# last_id = int(max(map(lambda x: int(x.split("_")[1]), data.keys())))
# if create_dict:
# with open(self.current_data_file, "w") as f:
# data[f"run_{last_id + 1}"] = {}
# json.dump(data, f)
# return last_id
def save_checkpoint(
self, epoch, checkpoint_dir, logger: Logger, vars: Optional[dict] = None
):
suffix = f"{epoch}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
torch.save(
self.netG.state_dict(),
(g_name := os.path.join(checkpoint_dir, f"netG_{suffix}.pth")),
)
print(f"Saving {g_name}")
# g_files = self["g_files"]
# if g_files:
# g_files.append(g_name)
# else:
# g_files = [g_name]
# self["g_files"] = g_files
logger.log_file(
file_path=g_name,
category="g_files",
metadata={"epoch": epoch},
description="Generator model",
)
torch.save(
self.netD.state_dict(),
(d_name := os.path.join(checkpoint_dir, f"netD_{suffix}.pth")),
)
print(f"Saving {d_name}")
# d_files = self["d_files"]
# if d_files:
# d_files.append(d_name)
# else:
# d_files = [d_name]
# self["d_files"] = d_files
logger.log_file(
file_path=d_name,
category="d_files",
metadata={"epoch": epoch},
description="Discriminator model",
)
if vars:
with open(
(v_name := os.path.join(checkpoint_dir, f"vars_{suffix}.pkl")), "wb"
) as f:
pickle.dump(vars, f)
print(f"Saving {v_name}")
# v_files = self["v_files"]
# if v_files:
# v_files.append(v_name)
# else:
# v_files = [v_name]
# self["v_files"] = v_files
logger.log_file(
file_path=v_name,
category="v_files",
metadata={"epoch": epoch},
description="Variables",
)
# def load_checkpoint(self, checkpoint_dir, epoch):
# raise NotImplementedError
# def load_run_json(self, run_id):
# data_file = os.path.join(self.checkpoint_dir, f"{self.data_file}.json")
# with open(data_file, "r") as f:
# return json.load(f)[f"run_{run_id}"]
if __name__ == "__main__":
Main(lr=0.0001).train(num_epochs=3, checkpoint_dir=None)