-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrajectory.py
executable file
·91 lines (79 loc) · 4 KB
/
trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from builtins import range
import sys
import numpy as np
import iDynTree; iDynTree.init_helpers(); iDynTree.init_numpy_helpers()
from identify import Identification
from identification.model import Model
from excitation.trajectoryGenerator import PulsedTrajectory
from excitation.trajectoryOptimizer import TrajectoryOptimizer, simulateTrajectory
from excitation.postureOptimizer import PostureOptimizer
import argparse
parser = argparse.ArgumentParser(description='Generate excitation trajectories, save to <filename>.')
parser.add_argument('--filename', type=str, help='the filename to save the trajectory to, otherwise <model>.trajectory.npz')
parser.add_argument('--config', required=True, type=str, help="use options from given config file")
parser.add_argument('--model', required=True, type=str, help='the file to load the robot model from')
parser.add_argument('--model_real', required=False, type=str, help='the file to load the "real" robot model from')
parser.add_argument('--world', required=False, type=str, help='the file to load world links from')
args = parser.parse_args()
import yaml
with open(args.config, 'r') as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
config['urdf'] = args.model
config['urdf_real'] = args.model_real
if config['useStaticTrajectories'] and not config['urdf_real']:
print('When optimizing static postures, need model_real argument!')
sys.exit()
config['jointNames'] = iDynTree.StringVector([])
if not iDynTree.dofsListFromURDF(config['urdf'], config['jointNames']):
sys.exit()
config['num_dofs'] = len(config['jointNames'])
config['skipSamples'] = 0
def main():
# save either optimized or random trajectory parameters to filename
if args.filename:
traj_file = args.filename
else:
traj_file = config['urdf'] + '.trajectory.npz'
if config['optimizeTrajectory']:
# find trajectory params by optimization
old_sim = config['simulateTorques']
config['simulateTorques'] = True
model = Model(config, config['urdf'])
if config['useStaticTrajectories']:
old_gravity = config['identifyGravityParamsOnly']
idf = Identification(config, config['urdf'], config['urdf_real'], measurements_files=None,
regressor_file=None, validation_file=None)
trajectoryOptimizer = PostureOptimizer(config, idf, model, simulation_func=simulateTrajectory, world=args.world)
config['identifyGravityParamsOnly'] = old_gravity
else:
idf = Identification(config, config['urdf'], urdf_file_real=None, measurements_files=None,
regressor_file=None, validation_file=None)
trajectoryOptimizer = TrajectoryOptimizer(config, idf, model, simulation_func=simulateTrajectory, world=args.world)
trajectory = trajectoryOptimizer.optimizeTrajectory()
config['simulateTorques'] = old_sim
else:
# use some random params
print("no optimized trajectory found, generating random one")
trajectory = PulsedTrajectory(config['num_dofs'], use_deg=config['useDeg']).initWithRandomParams()
print("a {}".format([t_a.tolist() for t_a in trajectory.a]))
print("b {}".format([t_b.tolist() for t_b in trajectory.b]))
print("q {}".format(trajectory.q.tolist()))
print("nf {}".format(trajectory.nf.tolist()))
print("wf {}".format(trajectory.w_f_global))
print("Saving found trajectory to {}".format(traj_file))
if config['useStaticTrajectories']:
# always saved with rad angles
np.savez(traj_file, static=True, angles=trajectory.angles)
else:
# TODO: remove degrees option
np.savez(traj_file, use_deg=trajectory.use_deg, static=False, a=trajectory.a, b=trajectory.b,
q=trajectory.q, nf=trajectory.nf, wf=trajectory.w_f_global)
if __name__ == '__main__':
main()