forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10-preact18-mixup.py
executable file
·157 lines (123 loc) · 5.85 KB
/
cifar10-preact18-mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: cifar10-preact18-mixup.py
# Author: Tao Hu <[email protected]>, Yauheni Selivonchyk <[email protected]>
import numpy as np
import argparse
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.tfutils.summary import *
from tensorpack.dataflow import dataset
BATCH_SIZE = 128
CLASS_NUM = 10
LR_SCHEDULE = [(0, 0.1), (100, 0.01), (150, 0.001)]
WEIGHT_DECAY = 1e-4
FILTER_SIZES = [64, 128, 256, 512]
MODULE_SIZES = [2, 2, 2, 2]
def preactivation_block(input, num_filters, stride=1):
num_filters_in = input.get_shape().as_list()[1]
# residual
net = BNReLU(input)
residual = Conv2D('conv1', net, num_filters, kernel_size=3, strides=stride, use_bias=False, activation=BNReLU)
residual = Conv2D('conv2', residual, num_filters, kernel_size=3, strides=1, use_bias=False)
# identity
shortcut = input
if stride != 1 or num_filters_in != num_filters:
shortcut = Conv2D('shortcut', net, num_filters, kernel_size=1, strides=stride, use_bias=False)
return shortcut + residual
class ResNet_Cifar(ModelDesc):
def inputs(self):
return [tf.placeholder(tf.float32, [None, 32, 32, 3], 'input'),
tf.placeholder(tf.float32, [None, CLASS_NUM], 'label')]
def _build_graph(self, inputs):
assert tf.test.is_gpu_available()
image, label = inputs
MEAN_IMAGE = tf.constant([0.4914, 0.4822, 0.4465], dtype=tf.float32)
STD_IMAGE = tf.constant([0.2023, 0.1994, 0.2010], dtype=tf.float32)
image = ((image / 255.0) - MEAN_IMAGE) / STD_IMAGE
image = tf.transpose(image, [0, 3, 1, 2])
pytorch_default_init = tf.variance_scaling_initializer(scale=1.0 / 3, mode='fan_in', distribution='uniform')
with argscope([Conv2D, BatchNorm, GlobalAvgPooling], data_format='channels_first'), \
argscope(Conv2D, kernel_initializer=pytorch_default_init):
net = Conv2D('conv0', image, 64, kernel_size=3, strides=1, use_bias=False)
for i, blocks_in_module in enumerate(MODULE_SIZES):
for j in range(blocks_in_module):
stride = 2 if j == 0 and i > 0 else 1
with tf.variable_scope("res%d.%d" % (i, j)):
net = preactivation_block(net, FILTER_SIZES[i], stride)
net = GlobalAvgPooling('gap', net)
logits = FullyConnected('linear', net, CLASS_NUM,
kernel_initializer=tf.random_normal_initializer(stddev=1e-3))
ce_cost = tf.nn.softmax_cross_entropy_with_logits(labels=label, logits=logits)
ce_cost = tf.reduce_mean(ce_cost, name='cross_entropy_loss')
single_label = tf.to_int32(tf.argmax(label, axis=1))
wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, single_label, 1)), name='wrong_vector')
# monitor training error
add_moving_summary(tf.reduce_mean(wrong, name='train_error'), ce_cost)
add_param_summary(('.*/W', ['histogram']))
# weight decay on all W matrixes. including convolutional layers
wd_cost = tf.multiply(WEIGHT_DECAY, regularize_cost('.*', tf.nn.l2_loss), name='wd_cost')
self.cost = tf.add_n([ce_cost, wd_cost], name='cost')
def _get_optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
opt = tf.train.MomentumOptimizer(lr, 0.9)
return opt
def get_data(train_or_test, isMixup, alpha):
isTrain = train_or_test == 'train'
ds = dataset.Cifar10(train_or_test)
if isTrain:
augmentors = [
imgaug.CenterPaste((40, 40)),
imgaug.RandomCrop((32, 32)),
imgaug.Flip(horiz=True),
]
ds = AugmentImageComponent(ds, augmentors)
batch = BATCH_SIZE
ds = BatchData(ds, batch, remainder=not isTrain)
def f(dp):
images, labels = dp
one_hot_labels = np.eye(CLASS_NUM)[labels] # one hot coding
if not isTrain or not isMixup:
return [images, one_hot_labels]
# mixup implementation:
# Note that for larger images, it's more efficient to do mixup on GPUs (i.e. in the graph)
weight = np.random.beta(alpha, alpha, BATCH_SIZE)
x_weight = weight.reshape(BATCH_SIZE, 1, 1, 1)
y_weight = weight.reshape(BATCH_SIZE, 1)
index = np.random.permutation(BATCH_SIZE)
x1, x2 = images, images[index]
x = x1 * x_weight + x2 * (1 - x_weight)
y1, y2 = one_hot_labels, one_hot_labels[index]
y = y1 * y_weight + y2 * (1 - y_weight)
return [x, y]
ds = MapData(ds, f)
return ds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--mixup', help='enable mixup', action='store_true')
parser.add_argument('--alpha', default=1, type=float, help='alpha in mixup')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
log_folder = 'train_log/cifar10-preact18%s' % ('-mixup' if args.mixup else '')
logger.set_logger_dir(os.path.join(log_folder))
dataset_train = get_data('train', args.mixup, args.alpha)
dataset_test = get_data('test', args.mixup, args.alpha)
steps_per_epoch = dataset_train.size()
config = TrainConfig(
model=ResNet_Cifar(),
data=QueueInput(dataset_train),
callbacks=[
ModelSaver(),
InferenceRunner(dataset_test,
[ScalarStats('cost'), ClassificationError('wrong_vector')]),
ScheduledHyperParamSetter('learning_rate', LR_SCHEDULE)
],
max_epoch=200,
steps_per_epoch=steps_per_epoch,
session_init=SaverRestore(args.load) if args.load else None
)
launch_train_with_config(config, SimpleTrainer())