forked from linfengYang/AugLPN_NILM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
66 lines (54 loc) · 1.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
def mae(prediction, true):
MAE = abs(true - prediction)
MAE = np.sum(MAE)
MAE = MAE / len(prediction)
return MAE
def sae(prediction, true, N):
T = len(prediction)
K = int(T / N)
SAE = 0
for k in range(1, N):
pred_r = np.sum(prediction[k * N: (k + 1) * N])
true_r = np.sum(true[k * N: (k + 1) * N])
SAE += abs(true_r - pred_r)
SAE = SAE / (K * N)
return SAE
def f1(prediction, true):
epsilon = 1e-8
TP = epsilon
FN = epsilon
FP = epsilon
TN = epsilon
for i in range(len(prediction)):
if prediction[i] >= 0.5:
prediction_binary = 1
else:
prediction_binary = 0
if prediction_binary == 1 and true[i] == 1:
TP += 1
elif prediction_binary == 0 and true[i] == 1:
FN += 1
elif prediction_binary == 1 and true[i] == 0:
FP += 1
elif prediction_binary == 0 and true[i] == 0:
TN += 1
R = TP / (TP + FN)
P = TP / (TP + FP)
f1 = (2 * P * R) / (P + R)
return f1
def standardize_data(data, mu=0.0, sigma=1.0):
data -= mu
data /= sigma
return data
def normalize_data(data, min_value=0.0, max_value=1.0):
data -= min_value
data /= max_value - min_value
return data
def build_overall_sequence(sequences):
unique_sequence = []
matrix = [sequences[::-1, :].diagonal(i) for i in range(-sequences.shape[0] + 1, sequences.shape[1])]
for i in range(len(matrix)):
unique_sequence.append(np.median(matrix[i]))
unique_sequence = np.array(unique_sequence)
return unique_sequence