forked from tdhock/PeakSegJoint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPeakSegJoint.c
786 lines (771 loc) · 27.8 KB
/
PeakSegJoint.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/* -*- compile-command: "R CMD INSTALL .." -*- */
#include "PeakSegJoint.h"
#include "OptimalPoissonLoss.h"
#include "binSum.h"
#include <stdio.h>
#include <stdlib.h>
int LossIndex_compare(const void *a, const void *b){
const struct LossIndex *A = a, *B = b;
//printf("compare %f %f\n", A->loss, B->loss);
return (int)(A->loss - B->loss);
}
int PeakSegJointHeuristicStep1(
struct ProfileList *profile_list,
int bin_factor,
struct PeakSegJointModelList *model_list
){
int n_samples = profile_list->n_profiles;
if(n_samples == 0){
return ERROR_NO_COVERAGE_DATA;
}
int chromStart, chromEnd, unfilled_chromStart, unfilled_chromEnd;
struct Profile *profile, *samples = profile_list->profile_vec;
struct PeakSegJointModel *model;
profile = samples;
unfilled_chromEnd = get_max_chromEnd(profile);
unfilled_chromStart = get_min_chromStart(profile);
for(int sample_i=1; sample_i < n_samples; sample_i++){
profile = samples + sample_i;
chromStart = get_min_chromStart(profile);
if(chromStart < unfilled_chromStart){
unfilled_chromStart = chromStart;
}
chromEnd = get_max_chromEnd(profile);
if(unfilled_chromEnd < chromEnd){
unfilled_chromEnd = chromEnd;
}
}
model_list->data_start_end[0] = unfilled_chromStart;
model_list->data_start_end[1] = unfilled_chromEnd;
//printf("data_start_end=[%d,%d]\n", unfilled_chromStart, unfilled_chromEnd);
int unfilled_bases = unfilled_chromEnd - unfilled_chromStart;
double data_bases = (double) unfilled_bases;
double bin_bases;
if(unfilled_bases/bin_factor < 4){
/*
4 is smallest the number of data points for which the 3-segment
optimization problem is not trivial.
If we don't have at least this many data points for the first
bin step, than we stop with an error.
*/
return ERROR_BIN_FACTOR_TOO_LARGE;
}
int bases_per_bin = 1;
while(unfilled_bases/bases_per_bin/bin_factor >= 4){
bases_per_bin *= bin_factor;
}
int n_bins = unfilled_bases / bases_per_bin;
/*
MaxBinSize() from line 1 of the JointZoom algorithm of the
PeakSegJoint paper returns the value of the C variable
bases_per_bin.
Little b in the text of the section that describes the JointZoom
algorithm is the C variable n_bins.
*/
if(unfilled_bases % bases_per_bin != 0){
n_bins ++ ;
}
model_list->n_bins[0] = n_bins;
model_list->bases_per_bin[0] = bases_per_bin;
model_list->bin_factor[0] = bin_factor;
int extra_bases = n_bins * bases_per_bin - unfilled_bases;
int extra_before = extra_bases/2;
int extra_after = extra_bases - extra_before;
//int extra_count;
int seg1_chromStart = unfilled_chromStart - extra_before;
int seg3_chromEnd = unfilled_chromEnd + extra_after;
model_list->bin_start_end[0] = seg1_chromStart;
model_list->bin_start_end[1] = seg3_chromEnd;
//printf("bin_start_end=[%d,%d]\n", seg1_chromStart, seg3_chromEnd);
// sample_*_mat variables are matrices n_bins x n_samples (in
// contrast to model_*_mat which are n_bins x n_segments=3).
int *sample_count_mat = (int*) malloc(n_bins * n_samples * sizeof(int));
int *count_vec, *cumsum_vec, cumsum_value;
int status;
for(int sample_i=0; sample_i < n_samples; sample_i++){
profile = samples + sample_i;
count_vec = sample_count_mat + n_bins*sample_i;
status = binSum(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
count_vec,
bases_per_bin, n_bins, seg1_chromStart,
EMPTY_AS_ZERO);
/* printf("initial sample_i=%d start=%d\n", sample_i, seg1_chromStart); */
/* for(int bin_i=0; bin_i < n_bins; bin_i++){ */
/* printf("%d ", count_vec[bin_i]); */
/* } */
/* printf("\n"); */
if(status != 0){
free(sample_count_mat);
return status;
}
/* Profiles may not have the same first chromStart and last
* chromEnd, so assume any values outside the observed range are
* zeros.
*/
/* The old code below would be useful for the case where we would
* want to subtract away those data:
status = binSum(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
&extra_count,
unfilled_chromStart - seg1_chromStart,
1,
seg1_chromStart,
EMPTY_AS_ZERO);
if(status != 0){
free(sample_count_mat);
return status;
}
count_vec[0] -= extra_count;
status = binSum(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
&extra_count,
seg3_chromEnd - unfilled_chromEnd,
1,
unfilled_chromEnd,
EMPTY_AS_ZERO);
if(status != 0){
free(sample_count_mat);
return status;
}
count_vec[n_bins - 1] -= extra_count;
*/
}//for sample_i
int bin_i, offset;
double mean_value, loss_value;
double flat_loss_total = 0.0;
int *sample_cumsum_mat = (int*) malloc(n_bins * n_samples * sizeof(int));
struct LossIndex *diff_index_vec =
(struct LossIndex *)malloc(sizeof(struct LossIndex)*n_samples);
int n_feasible;
for(int sample_i=0; sample_i < n_samples; sample_i++){
cumsum_value = 0;
offset = n_bins * sample_i;
count_vec = sample_count_mat + offset;
cumsum_vec = sample_cumsum_mat + offset;
//printf("[sample%02d] ", sample_i);
for(bin_i=0; bin_i < n_bins; bin_i++){
cumsum_value += count_vec[bin_i];
//printf("%d ", cumsum_value);
cumsum_vec[bin_i] = cumsum_value;
}
model_list->last_cumsum_vec[sample_i] = cumsum_value;
//printf("\n");
mean_value = cumsum_value / data_bases;
/* printf("sample_i=%d cumsum=%d bases=%f\n", */
/* sample_i, cumsum_value, data_bases); */
model_list->sample_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
model_list->flat_loss_vec[sample_i] = loss_value;
flat_loss_total += loss_value;
}
model_list->model_vec[0].loss[0] = flat_loss_total;
int n_peaks;
int sample_i;
double *seg1_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg2_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg3_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *peak_loss_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg1_loss_vec = (double*)malloc(sizeof(double)*n_samples);
/*
The for loops below implement the GridSearch() function mentioned
on line 2 of the JointZoom algorithm in the PeakSegJoint paper.
*/
for(int seg1_LastIndex=0; seg1_LastIndex < n_bins-2; seg1_LastIndex++){
for(int sample_i=0; sample_i < n_samples; sample_i++){
cumsum_vec = sample_cumsum_mat + n_bins*sample_i;
cumsum_value = cumsum_vec[seg1_LastIndex];
bin_bases = (seg1_LastIndex+1)*bases_per_bin;
data_bases = bin_bases - (double)extra_before;
/* printf("sample_i=%d extra_before=%d bin_bases=%f data_bases=%f\n", */
/* sample_i, extra_before, bin_bases, data_bases); */
mean_value = cumsum_value/data_bases;
seg1_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
seg1_loss_vec[sample_i] = loss_value;
}
for(int seg2_LastIndex=seg1_LastIndex+1;
seg2_LastIndex < n_bins-1;
seg2_LastIndex++){
n_feasible=0;
for(sample_i=0; sample_i < n_samples; sample_i++){
peak_loss_vec[sample_i] = seg1_loss_vec[sample_i];
cumsum_vec = sample_cumsum_mat + n_bins*sample_i;
//segment 2.
cumsum_value = cumsum_vec[seg2_LastIndex]-cumsum_vec[seg1_LastIndex];
data_bases = (seg2_LastIndex-seg1_LastIndex)*bases_per_bin;
mean_value = cumsum_value/data_bases;
seg2_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
peak_loss_vec[sample_i] += loss_value;
//segment 3.
cumsum_value = cumsum_vec[n_bins-1]-cumsum_vec[seg2_LastIndex];
bin_bases = (n_bins-1-seg2_LastIndex)*bases_per_bin;
data_bases = bin_bases - extra_after;
mean_value = cumsum_value/data_bases;
seg3_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
peak_loss_vec[sample_i] += loss_value;
/* printf("sample_i=%d means %f %f %f\n", */
/* sample_i, */
/* seg1_mean_vec[sample_i], */
/* seg2_mean_vec[sample_i], */
/* seg3_mean_vec[sample_i]); */
//if feasible, add to list of loss differences.
if(seg1_mean_vec[sample_i] < seg2_mean_vec[sample_i] &&
seg3_mean_vec[sample_i] < seg2_mean_vec[sample_i]){
diff_index_vec[n_feasible].sample_i = sample_i;
diff_index_vec[n_feasible].loss =
peak_loss_vec[sample_i]-model_list->flat_loss_vec[sample_i];
n_feasible++;
}
}//sample_i
if(0 < n_feasible){
/* printf("[0,%d][%d,%d][%d,%d] %d feasible\n", */
/* seg1_LastIndex, */
/* seg1_LastIndex+1, */
/* seg2_LastIndex, */
/* seg2_LastIndex+1, */
/* n_bins-1, */
/* n_feasible); */
/* printf("before sort"); */
/* for(sample_i=0; sample_i < n_feasible; sample_i++){ */
/* printf(" %f", diff_index_vec[sample_i].loss); */
/* } */
/* printf("\n"); */
qsort(diff_index_vec, n_feasible, sizeof(struct LossIndex),
LossIndex_compare);
/* printf("after sort"); */
/* for(sample_i=0; sample_i < n_feasible; sample_i++){ */
/* printf(" %f", diff_index_vec[sample_i].loss); */
/* } */
/* printf("\n"); */
for(int model_i=0; model_i < n_feasible; model_i++){
// start from loss of all samples with 1 segment.
loss_value = flat_loss_total;
n_peaks = model_i + 1;
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = diff_index_vec[diff_i].sample_i;
// subtract the loss of this sample with 1 segment.
loss_value -= model_list->flat_loss_vec[sample_i];
// add loss from this sample with 3 segments (1 peak).
loss_value += peak_loss_vec[sample_i];
}
model = model_list->model_vec + n_peaks;
if(loss_value < model->loss[0]){
model->loss[0] = loss_value;
model->peak_start_end[0] =
seg1_chromStart + (seg1_LastIndex+1)*bases_per_bin;
model->peak_start_end[1] =
seg1_chromStart + (seg2_LastIndex+1)*bases_per_bin;
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = diff_index_vec[diff_i].sample_i;
cumsum_vec = sample_cumsum_mat + n_bins*sample_i;
model->samples_with_peaks_vec[diff_i] = sample_i;
if(seg1_LastIndex == 0){
model->left_cumsum_vec[diff_i] = 0;
}else{
model->left_cumsum_vec[diff_i] = cumsum_vec[seg1_LastIndex-1];
}
model->right_cumsum_vec[diff_i] = cumsum_vec[seg2_LastIndex-1];
model->seg1_mean_vec[diff_i] = seg1_mean_vec[sample_i];
model->seg2_mean_vec[diff_i] = seg2_mean_vec[sample_i];
model->seg3_mean_vec[diff_i] = seg3_mean_vec[sample_i];
}
}
}//model_i
}//if(n_feasible)
}//seg2_LastIndex
}//seg2_FirstIndex
free(sample_cumsum_mat);
free(sample_count_mat);
free(peak_loss_vec);
free(seg1_loss_vec);
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(diff_index_vec);
return status;
}
int
binSumLR
(int *data_start_end,
int *chromStart, int *chromEnd,
int *coverage, int n_entries,
int *left_bin_vec, int *right_bin_vec,
int left_chromStart, int right_chromStart,
int bases_per_bin, int n_bins){
int bin_chromEnd, bin_chromStart;
int extra_chromStart, extra_chromEnd, extra_bases, extra_coverage;
int status;
/* printf("left bin_size=%d bins=%d start=%d\n", */
/* bases_per_bin, n_bins, left_chromStart); */
status = binSum(chromStart, chromEnd,
coverage, n_entries,
left_bin_vec,
bases_per_bin,
n_bins,
left_chromStart,
EMPTY_AS_ZERO);
if(status != 0){
return status;
}
/* printf("right bin_size=%d bins=%d start=%d\n", */
/* bases_per_bin, n_bins, right_chromStart); */
status = binSum(chromStart, chromEnd,
coverage, n_entries,
right_bin_vec,
bases_per_bin,
n_bins,
right_chromStart,
EMPTY_AS_ZERO);
if(status != 0){
return status;
}
for(int bin_i=0; bin_i < n_bins; bin_i++){
//left bin.
bin_chromStart = left_chromStart + bases_per_bin * bin_i;
bin_chromEnd = bin_chromStart + bases_per_bin;
if(data_start_end[0] < bin_chromEnd){
if(data_start_end[0] <= bin_chromStart){
// ( data ]
// (bin]
// (bin]
// bin is completely data, leave it alone!
}else{
// ( data ]
// (bin]
// - extra
// (bin]
// --- extra
// bin has some data, so subtract the extra.
extra_chromStart = bin_chromStart;
extra_chromEnd = data_start_end[0];
extra_bases = extra_chromEnd - extra_chromStart;
//printf("left start=%d bases=%d\n", extra_chromStart, extra_bases);
status = binSum(chromStart, chromEnd,
coverage, n_entries,
&extra_coverage,
extra_bases,
1,
extra_chromStart,
EMPTY_AS_ZERO);
if(status != 0){
return status;
}
left_bin_vec[bin_i] -= extra_coverage;
}
}else{
// ( data ]
// (bin]
// bin does not overlap data, so set it to zero.
left_bin_vec[bin_i] = 0;
}
//right bin.
bin_chromStart = right_chromStart + bases_per_bin * bin_i;
bin_chromEnd = bin_chromStart + bases_per_bin;
if(bin_chromStart < data_start_end[1]){
if(bin_chromEnd <= data_start_end[1]){
// ( data ]
// (bin]
// (bin]
// bin is completely data, leave it alone!
}else{
// ( data ]
// (bin]
// -- extra
extra_chromStart = data_start_end[1];
extra_chromEnd = bin_chromEnd;
extra_bases = extra_chromEnd - extra_chromStart;
//printf("right start=%d bases=%d\n", extra_chromStart, extra_bases);
status = binSum(chromStart, chromEnd,
coverage, n_entries,
&extra_coverage,
extra_bases,
1,
extra_chromStart,
EMPTY_AS_ZERO);
if(status != 0){
return status;
}
right_bin_vec[bin_i] -= extra_coverage;
}
}else{
// ( data ]
// (bin]
// (bin]
// bin does not overlap data, so set it to zero.
right_bin_vec[bin_i] = 0;
}
}
return 0;
}
int
PeakSegJointHeuristicStep2
(struct ProfileList *profile_list,
struct PeakSegJointModelList *model_list
){
int n_bins = model_list->bin_factor[0] * 2;
int n_samples = model_list->n_models - 1;
struct PeakSegJointModel *model;
struct Profile *profile;
int bases_per_bin;
int left_chromStart, right_chromStart;
//printf("before malloc n_bins=%d n_samples=%d\n", n_bins, n_samples);
int *left_bin_vec = (int*) malloc(n_bins * sizeof(int));
int *right_bin_vec = (int*) malloc(n_bins * sizeof(int));
int *left_cumsum_mat = (int*) malloc(n_bins * n_samples * sizeof(int));
int *right_cumsum_mat = (int*) malloc(n_bins * n_samples * sizeof(int));
double *seg1_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg2_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg3_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg1_loss_vec = (double*)malloc(sizeof(double)*n_samples);
//printf("after malloc\n");
double total_loss, loss_value, mean_value;
double bin_bases, data_bases;
int extra_before = model_list->data_start_end[0] -
model_list->bin_start_end[0];
int extra_after = model_list->bin_start_end[1] -
model_list->data_start_end[1];
int *left_cumsum_vec, *right_cumsum_vec;
int status;
int left_cumsum_value, right_cumsum_value, cumsum_value;
int peakStart, peakEnd;
int best_seg1, best_seg2, sample_i;
/* When performing the minimization over peakStart/End locations, it
* is possible that at any given bases_per_bin value, there is no
* better solution than what we found for the previous bases_per_bin
* value. In that case, we begin the search anew at a lower
* resolution, but we need to copy the cumsums from the following
* index of left_right_vec: */
int no_min_index = model_list->bin_factor[0] - 2;
for(int n_peaks=1; n_peaks < model_list->n_models; n_peaks++){
model = model_list->model_vec + n_peaks;
if(model->loss[0] < INFINITY){
bases_per_bin = model_list->bases_per_bin[0];
/*
The while loop below corresponds to line 3 of the JointZoom
algorithm from the PeakSegJoint paper.
*/
while(1 < bases_per_bin){
best_seg1 = -1; // indicates no min found.
left_chromStart = model->peak_start_end[0] - bases_per_bin;
right_chromStart = model->peak_start_end[1] - bases_per_bin;
/*
Below in the C code we decrease the value of bases_per_bin,
as in line 4 of the JointZoom algorithm in the PeakSegJoint
paper.
*/
bases_per_bin /= model_list->bin_factor[0];
//printf("bases_per_bin=%d left cumsum before:\n", bases_per_bin);
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
profile = profile_list->profile_vec + sample_i;
//printf("binSumLR sample_i=%d\n", sample_i);
status = binSumLR(model_list->data_start_end,
profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
left_bin_vec, right_bin_vec,
left_chromStart, right_chromStart,
bases_per_bin, n_bins);
if(status != 0){
//printf("binSumLR bad status\n");
free(left_bin_vec);
free(right_bin_vec);
free(left_cumsum_mat);
free(right_cumsum_mat);
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(seg1_loss_vec);
return status;
}
left_cumsum_vec = left_cumsum_mat + n_bins*sample_i;
left_cumsum_value = model->left_cumsum_vec[diff_i];
right_cumsum_vec = right_cumsum_mat + n_bins*sample_i;
right_cumsum_value = model->right_cumsum_vec[diff_i];
//printf("%d ", left_cumsum_value);
//printf("%d ", right_cumsum_value);
for(int bin_i=0; bin_i < n_bins; bin_i++){
left_cumsum_value += left_bin_vec[bin_i];
left_cumsum_vec[bin_i] = left_cumsum_value;
right_cumsum_value += right_bin_vec[bin_i];
right_cumsum_vec[bin_i] = right_cumsum_value;
}
}//for(diff_i
//printf("\n");
/* printf("left bases_per_bin=%d n_peaks=%d\n", bases_per_bin, n_peaks); */
/* for(int diff_i=0;diff_i<n_peaks;diff_i++){ */
/* sample_i = model->samples_with_peaks_vec[diff_i]; */
/* left_cumsum_vec = left_cumsum_mat + n_bins*sample_i; */
/* for(int bin_i=0;bin_i<n_bins;bin_i++){ */
/* printf("%d ", left_cumsum_vec[bin_i]); */
/* } */
/* printf("\n"); */
/* } */
/* printf("\n"); */
/* printf("right bases_per_bin=%d n_peaks=%d\n", bases_per_bin, n_peaks); */
/* for(int diff_i=0;diff_i<n_peaks;diff_i++){ */
/* sample_i = model->samples_with_peaks_vec[diff_i]; */
/* right_cumsum_vec = right_cumsum_mat + n_bins*sample_i; */
/* for(int bin_i=0;bin_i<n_bins;bin_i++){ */
/* printf("%d ", right_cumsum_vec[bin_i]); */
/* } */
/* printf("\n"); */
/* } */
/*
cumsum matrices have been computed, so now use them to
compute the loss and feasibility of all models.
The for loops below correspond to SearchNearPeak() on line
5 of the JointZoom algorithm in the PeakSegJoint paper.
*/
for(int seg1_LastIndex=0; seg1_LastIndex < n_bins; seg1_LastIndex++){
peakStart = left_chromStart + (seg1_LastIndex+1)*bases_per_bin;
//printf("[seg1last=%d] seg1 cumsum bases ", seg1_LastIndex);
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
left_cumsum_vec = left_cumsum_mat + n_bins*sample_i;
cumsum_value = left_cumsum_vec[seg1_LastIndex];
bin_bases = peakStart - model_list->bin_start_end[0];
data_bases = bin_bases - extra_before;
mean_value = cumsum_value/data_bases;
//printf("%d %f ", cumsum_value, bases_value);
seg1_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
seg1_loss_vec[sample_i] = loss_value;
}
//printf("\n");
for(int seg2_LastIndex=0; seg2_LastIndex < n_bins; seg2_LastIndex++){
peakEnd = right_chromStart + (seg2_LastIndex+1)*bases_per_bin;
/* printf("\npeaks=%d[%d,%d]bases_per_bin=%d\n", */
/* n_peaks, peakStart, peakEnd, bases_per_bin); */
total_loss = model_list->model_vec[0].loss[0];
if(peakEnd <= peakStart){
total_loss = INFINITY;
}
//printf("[seg2last=%d]\n", seg2_LastIndex);
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
left_cumsum_vec = left_cumsum_mat + n_bins*sample_i;
right_cumsum_vec = right_cumsum_mat + n_bins*sample_i;
total_loss -= model_list->flat_loss_vec[sample_i];
//segment 1.
total_loss += seg1_loss_vec[sample_i];
//segment 2.
cumsum_value =
right_cumsum_vec[seg2_LastIndex]-
left_cumsum_vec[seg1_LastIndex];
data_bases = peakEnd-peakStart;
mean_value = cumsum_value/data_bases;
/* printf("[sample=%d][seg=2] %d %f", */
/* sample_i, */
/* cumsum_value, */
/* bases_value); */
seg2_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
total_loss += loss_value;
//segment 3.
cumsum_value =
model_list->last_cumsum_vec[sample_i]-
right_cumsum_vec[seg2_LastIndex];
bin_bases = model_list->bin_start_end[1] - peakEnd;
data_bases = bin_bases - extra_after;
mean_value = cumsum_value/data_bases;
seg3_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(cumsum_value, mean_value);
total_loss += loss_value;
/* printf("[sample=%d] %f %f %f\n", */
/* sample_i, */
/* seg1_mean_vec[sample_i], */
/* seg2_mean_vec[sample_i], */
/* seg3_mean_vec[sample_i]); */
//if not feasible, loss is infinite.
if(seg2_mean_vec[sample_i] <= seg1_mean_vec[sample_i] ||
seg2_mean_vec[sample_i] <= seg3_mean_vec[sample_i] ||
peakStart <= model_list->data_start_end[0] ||
model_list->data_start_end[1] <= peakEnd){
total_loss = INFINITY;
}
}
//printf("loss=%f\n", total_loss);
if(total_loss < model->loss[0]){
model->loss[0] = total_loss;
model->peak_start_end[0] = peakStart;
model->peak_start_end[1] = peakEnd;
/* printf("new best loss=%f [%d,%d]\n", */
/* total_loss, seg1_LastIndex, seg2_LastIndex); */
best_seg1 = seg1_LastIndex;
best_seg2 = seg2_LastIndex;
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
model->seg1_mean_vec[diff_i] = seg1_mean_vec[sample_i];
model->seg2_mean_vec[diff_i] = seg2_mean_vec[sample_i];
model->seg3_mean_vec[diff_i] = seg3_mean_vec[sample_i];
}
}//total_loss
}//seg2_LastIndex
}//seg1_LastIndex
/* printf("n_peaks=%d bases_per_bin=%d [%d,%d] loss=%f\n", */
/* n_peaks, bases_per_bin, */
/* model->peak_start_end[0], model->peak_start_end[1], */
/* model->loss[0]); */
if(best_seg1 == -1){
//printf("no min found\n");
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
left_cumsum_vec = left_cumsum_mat + n_bins*sample_i;
model->left_cumsum_vec[diff_i] =
left_cumsum_vec[no_min_index];
right_cumsum_vec = right_cumsum_mat + n_bins*sample_i;
model->right_cumsum_vec[diff_i] =
right_cumsum_vec[no_min_index];
}//diff_i
}else{
for(int diff_i=0; diff_i < n_peaks; diff_i++){
sample_i = model->samples_with_peaks_vec[diff_i];
if(best_seg1 != 0){
left_cumsum_vec = left_cumsum_mat + n_bins*sample_i;
model->left_cumsum_vec[diff_i] =
left_cumsum_vec[best_seg1-1];
}
if(best_seg2 != 0){
right_cumsum_vec = right_cumsum_mat + n_bins*sample_i;
model->right_cumsum_vec[diff_i] =
right_cumsum_vec[best_seg2-1];
}
}//diff_i
}
//printf("\n");
}//while(1 < bases_per_bin)
}//if(loss < INFINITY
}//for(n_peaks
//printf("free at end\n");
free(left_bin_vec);
free(right_bin_vec);
free(left_cumsum_mat);
free(right_cumsum_mat);
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(seg1_loss_vec);
return 0;
}
int PeakSegJointHeuristicStep3
(struct ProfileList *profile_list,
struct PeakSegJointModelList *model_list
){
struct PeakSegJointModel *model, *prev_model;
int n_samples = model_list->n_models - 1;
double flat_loss_total = model_list->model_vec[0].loss[0];
double *seg1_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg2_mean_vec = (double*)malloc(sizeof(double)*n_samples);
double *seg3_mean_vec = (double*)malloc(sizeof(double)*n_samples);
struct LossIndex *diff_index_vec =
(struct LossIndex *)malloc(sizeof(struct LossIndex)*n_samples);
int n_feasible, peakStart, peakEnd, status, total;
int dataStart = model_list->data_start_end[0];
int dataEnd = model_list->data_start_end[1];
double data_bases, mean_value, loss_value;
struct Profile *profile;
for(int n_peaks=2; n_peaks < model_list->n_models; n_peaks++){
n_feasible=0;
model = model_list->model_vec + n_peaks;
prev_model = model_list->model_vec + n_peaks - 1;
if(prev_model->loss[0] < INFINITY){
peakStart = prev_model->peak_start_end[0];
peakEnd = prev_model->peak_start_end[1];
for(int sample_i=0; sample_i < n_samples; sample_i++){
profile = profile_list->profile_vec + sample_i;
//segment 1.
status = oneBin(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
&total, dataStart, peakStart);
if(status != 0){
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(diff_index_vec);
return status;
}
data_bases = peakStart - dataStart;
mean_value = total/data_bases;
seg1_mean_vec[sample_i] = mean_value;
loss_value = OptimalPoissonLoss(total, mean_value);
//segment 2.
status = oneBin(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
&total, peakStart, peakEnd);
if(status != 0){
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(diff_index_vec);
return status;
}
data_bases = peakEnd - peakStart;
mean_value = total/data_bases;
seg2_mean_vec[sample_i] = mean_value;
loss_value += OptimalPoissonLoss(total, mean_value);
//segment 3.
status = oneBin(profile->chromStart, profile->chromEnd,
profile->coverage, profile->n_entries,
&total, peakEnd, dataEnd);
if(status != 0){
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(diff_index_vec);
return status;
}
data_bases = dataEnd - peakEnd;
mean_value = total/data_bases;
seg3_mean_vec[sample_i] = mean_value;
loss_value += OptimalPoissonLoss(total, mean_value);
//if feasible, add to list of loss differences.
/* printf("n_peaks=%d %f %f %f", */
/* n_peaks, seg1_mean_vec[sample_i], */
/* seg2_mean_vec[sample_i], */
/* seg3_mean_vec[sample_i]); */
if(seg1_mean_vec[sample_i] < seg2_mean_vec[sample_i] &&
seg3_mean_vec[sample_i] < seg2_mean_vec[sample_i]){
//printf(" FEASIBLE");
diff_index_vec[n_feasible].sample_i = sample_i;
diff_index_vec[n_feasible].loss =
loss_value-model_list->flat_loss_vec[sample_i];
n_feasible++;
}
//printf("\n");
}//sample_i
if(n_peaks <= n_feasible){
qsort(diff_index_vec, n_feasible, sizeof(struct LossIndex),
LossIndex_compare);
loss_value = flat_loss_total;
for(int diff_i=0; diff_i < n_peaks; diff_i++){
// add loss difference.
loss_value += diff_index_vec[diff_i].loss;
}
/* printf("n_peaks=%d loss_value=%f model loss=%f", */
/* n_peaks, loss_value, model->loss[0]); */
if(loss_value < model->loss[0]){
//printf(" NEW OPTIMUM!");
model->loss[0] = loss_value;
model->peak_start_end[0] = peakStart;
model->peak_start_end[1] = peakEnd;
for(int diff_i=0; diff_i < n_peaks; diff_i++){
int sample_i = diff_index_vec[diff_i].sample_i;
model->samples_with_peaks_vec[diff_i] = sample_i;
model->seg1_mean_vec[diff_i] = seg1_mean_vec[sample_i];
model->seg2_mean_vec[diff_i] = seg2_mean_vec[sample_i];
model->seg3_mean_vec[diff_i] = seg3_mean_vec[sample_i];
}
}//if(loss_value < model->loss[0]
//printf("\n");
}//if(n_feasible)
}//if(prev_model->loss[0] < INFINITY
}//for(n_peaks
free(seg1_mean_vec);
free(seg2_mean_vec);
free(seg3_mean_vec);
free(diff_index_vec);
return 0;
}