-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprime.py
186 lines (156 loc) · 3.9 KB
/
prime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# prime.py
# created by Kaiwen Xu
#
# module for calculating primes
import math
import integer
class PrimeNumber:
"""Prime number generator (non-stop).
"""
def __init__(self, start=2):
"""Arguments:
start -- the number starts from (default 2)
"""
if integer.isInt(start) and start >= 2:
self.gen = start
self.start = start
else:
raise ValueError('Start number must be an integer and not less than 2.')
def __iter__(self):
return self
def next(self):
"""Return next prime number.
"""
while not isPrime(self.gen):
self.gen += 1
else:
self.gen += 1
return (self.gen - 1)
def reset(self, start=None):
"""Reset generator.
Arguments:
start -- if not set, reset to the start number which initialized with
(default None)
"""
if start is None:
self.gen = self.start
else:
if integer.isInt(start) and start >= 2:
self.gen = start
self.start = start
else:
raise ValueError('Start number must be an integer and not less than 2.')
def isPrime(n):
"""Checking whether the number is prime.
Arguments:
n -- input number
"""
if n > 1:
sqrtN = int(math.sqrt(n))
for i in xrange(2, sqrtN + 1):
if n % i == 0:
return False
return True
else:
return False
def isCircularPrime(n):
"""Checking whether the number is circular prime.
Arguments:
n -- input number
"""
strnum = str(n)
strlen = len(strnum)
for st in xrange(1, strlen + 1):
num = int(strnum[st:] + strnum[:st])
if not isPrime(num):
return False
else:
return True
def getNumPrimes(num):
"""Return a list which contains specific amount of primes.
Arguments:
num -- amount of primes
"""
i = 0
p = PrimeNumber()
list = []
while i < num:
list.append(p.next())
i += 1
else:
return list
def getPrimes(below, above=2, method='erato'):
"""Return a list of primes.
Arguments:
below -- less than or equal to
above -- greater or equal to (default 2)
method -- implementation, which includes brute-force 'brute',
sieve of eratosthenes 'erato', sieve of atkin 'atkin'
(default 'erato')
Suitable cases:
'brute' -- small prime list start from large number
'erato' -- small and medium prime list
'atkin' -- large prime list
"""
if above < 2:
raise ValueError('Prime numbers must be greater or equal to 2.')
elif above > below:
raise ValueError("'above' is greater than 'below'.")
if method == 'brute':
return filter(isPrime, range(above, below + 1))
elif method == 'erato':
result = []
listlen = below + 1
mask = listlen * [True]
mask[0] = False
mask[1] = False
for i in xrange(0, listlen):
if mask[i]:
rm = 2 * i
while rm <= below:
if mask[rm]:
mask[rm] = False
rm += i
for i in xrange(above, listlen):
if mask[i]:
result.append(i)
return result
elif method == 'atkin':
return getPrimesAtkin(below, above, False)
else:
raise RuntimeError(''.join(['No implementation named ', str(method), ' found.']))
def getPrimesAtkin(below, above=2, thread=False):
"""Sieve of atkin implementation of getPrimes.
Arguments:
below -- less than or equal to
above -- greater or equal to (default 2)
thread -- enable thread (default False)
NOTICE:
Threading has been removed. This function will do exactly the same thing,
no matter what thread argument is.
"""
result = []
listlen = below + 1
sqrtlimit = int(math.sqrt(below)) + 1
mask = listlen * [False]
mask[2] = True
mask[3] = True
for x in xrange(1, sqrtlimit):
for y in xrange(1, sqrtlimit):
n = 4 * x * x + y * y
if n <= below and (n % 12 == 1 or n % 12 == 5):
mask[n] = not mask[n]
n = 3 * x * x + y * y
if n <= below and (n % 12 == 7):
mask[n] = not mask[n]
n = 3 * x * x - y * y
if x > y and n <= below and n % 12 == 11:
mask[n] = not mask[n]
for n in xrange(5, sqrtlimit):
if mask[n]:
for k in xrange(n * n, listlen, n * n):
mask[k] = False
for i in xrange(above, listlen):
if mask[i]:
result.append(i)
return result