-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmerge_memmaps.py
executable file
·58 lines (45 loc) · 1.74 KB
/
merge_memmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# Read one or more memmap datasets (as created by transform.py)
# and merge them into a larger dataset.
import glob
import os
import re
import sys
import numpy as np
import memmap
def doOneSet(basedir, globExpr, outDatasetName):
outDatasetDir = f'{basedir}/{outDatasetName}'
os.makedirs(outDatasetDir, exist_ok=True)
group = {
'main': [],
'scores': [],
'winTrick': [],
'moonProb': [],
}
inDatasetGlob = f'{basedir}/{globExpr}.d'
inputs = glob.glob(inDatasetGlob)
assert len(inputs) > 1
for inDatasetPath in inputs:
mainData, scoresData, winTrickProbs, moonProbData = memmap.load_dataset(inDatasetPath)
group['main'].append(mainData)
group['scores'].append(scoresData)
group['winTrick'].append(winTrickProbs)
group['moonProb'].append(moonProbData)
group['main'] = np.concatenate(group['main'], axis=0)
group['scores'] = np.concatenate(group['scores'], axis=0)
group['winTrick'] = np.concatenate(group['winTrick'], axis=0)
group['moonProb'] = np.concatenate(group['moonProb'], axis=0)
N = len(group['main'])
print(f'Merging {N} total samples')
memmap.save_group(group, outDatasetDir)
if __name__ == '__main__':
globExpr = '??' if len(sys.argv)==1 else sys.argv[1]
purpose = 'both' if len(sys.argv)==2 else sys.argv[2]
assert len(globExpr) == 2
outDatasetName = globExpr.replace('?', 'x') + '.m' # dataset names will be 27 -> 27.d, 2? -> 2x.d, ?? -> xx.d
print('outDatasetName:', outDatasetName)
if purpose == 'both':
doOneSet('training', globExpr, outDatasetName)
doOneSet('validation', globExpr, outDatasetName)
else:
doOneSet(purpose, globExpr, outDatasetName)