-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAbsExecute.lean
767 lines (689 loc) · 28.9 KB
/
AbsExecute.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
-------------------------------------------------------------------
-- The PEDANTIC (Proof Engine for Deductive Automation using Non-deterministic
-- Traversal of Instruction Code) verification framework
--
-- Developed by Kenneth Roe
-- For more information, check out www.cs.jhu.edu/~roe
--
-- AbsExecute.v
-- This file contains the basic hoare triple definition and many auxiliary theorems
-- and definitions related to forward propagation.
--
-- Some key definitions:
-- absExecute
-- hoare_triple
-- strengthenPost
-- assign
-- basic_assign
-- load_traverse
-- load
-- store
-- new_thm
-- delete_thm
-- if_statement
-- while
-------------------------------------------------------------------
import .impHeap
import .AbsState
open tactic
open monad
open expr
open smt_tactic
-------------------------------------------------------------------
--def In {A:Type} : A → list A → Prop
--| _ list.nil := false
--| a (b :: m) := b = a ∨ In a m
def absExecute (funs : functions)
(c : com)
(s : absState)
(s' : absState)
(r : list (@absExp ℕ))
(s'' : absState)
(exc : ident → ((@absExp ℕ) × absState)) : Prop :=
∀ st st' i x,
realizeState s st →
((∃ st', ∃ r, ceval funs st c st' r) ∧
((ceval funs st c st' func_result.NoResult → realizeState s' st') ∧
(ceval funs st c st' (func_result.Return x) →
((∀ rx, rx ∈ r → @absEval ℕ (st'.snd) rx = x) ∧ realizeState s'' st')) ∧
(ceval funs st c st' (func_result.Exception i x) → (@absEval ℕ (st'.snd) ((exc i).fst) = x ∧ realizeState ((exc i).snd) st'))))
def hoare_triple (P : absState) (c : com) (Q : absState) (r : list (@absExp ℕ)) (Qr : absState) (exc : ident → ((@absExp ℕ) × absState)) : Prop :=
absExecute (λ x y z a b, ff) c P Q r Qr exc.
notation `{{ ` P ` }} ` c ` {{ ` Q ` }}` := (hoare_triple P c Q list.nil absNone (λ (x:ident), ((λ (x:env), 0),absNone))).
notation `{{ ` P ` }} ` c ` {{ ` Q ` return ` rr ` with ` QQ ` }}` := (hoare_triple P c Q rr QQ (λ (x:ident), ((λ (x:env), 0),absNone))).
theorem override_equal : ∀ env v, override env v (env v)=env :=
begin
intros, unfold override, funext,
by_cases (v=l),rewrite h,simp,
simp [h]
end
--theorem fun_ext {t} {u} :
-- ∀ (a:t→u) (b:t→u), a=b → (λ (x:t), a)=(λ (x:t), b) :=
--begin
-- assume a b h, by rw h
--end
theorem double_override : ∀ env v v1 v2, override (override env v v1) v v2=override env v v2 :=
begin
intros, unfold override,
have h:(∀ l, (ite (v=l) v2 (ite (v=l) v1 (env l)))=
ite (v=l) v2 (env l)),
intros, by_cases (v=l), rewrite h, simp,
simp [h], simp only [h]
end
theorem nonethm {t} : (none <|> none)=@none t:= rfl.
theorem nonethm2 {t} {x:option t} : (x <|> none)=x:= begin
cases x;refl
end
theorem assignPropagate: ∀ (P : absState) (v:ℕ) e xx,
hoare_triple P (v ::= e)
(absExists
(λ vv, ( (λ st, (P ** (absPredicate (λ ee, aeval ee e=st.snd v)))
(override_state v vv st))
))) [] absNone xx :=
begin
unfold override_state,
unfold hoare_triple, intros, unfold absExecute,
intros, split,
existsi _, existsi _, apply ceval.Ass,
unfold realizeState at a, split, intro, cases a_1,
unfold realizeState, unfold absExists,
existsi (st.snd v), unfold absCompose, existsi _, existsi _,
simp, split,
have h:(P ((st.fst, override (st.snd) v (aeval (st.snd) e)).fst,
override ((st.fst, override (st.snd) v (aeval (st.snd) e)).snd) v (st.snd v))), swap,
apply h, simp, rw double_override, rw override_equal,
cases st, simp, apply a,
swap, apply ((empty_heap, override (st.snd) v (aeval (st.snd) e)).fst,
override ((st.fst, override (st.snd) v (aeval (st.snd) e)).snd) v (st.snd v)),
simp,split, unfold absPredicate, simp, rewrite double_override,
rw override_equal, unfold override, simp,
simp, rw double_override, rw override_equal,
unfold concreteCompose, simp, split,
intro, right, unfold empty_heap, unfold inhabited.default,
unfold empty_heap, unfold inhabited.default,
unfold compose_heaps, simp only [nonethm2],
--cases st, have h:(∀ x, compose_heaps st.fst empty_heap x = st.fst x),
--intro, unfold compose_heaps, generalize el:(st.fst x_1)=qq,
--cases qq, unfold empty_heap, unfold inhabited.default,
--apply nonethm,
--unfold empty_heap, unfold inhabited.default,
--simp only [compose_heaps._match_1],
--tactic.funext,apply h,
split, intros, split, intros, cases a_2, cases a_1,
intros, cases a_1
end
--set_option trace.simp_lemmas true.
--set_option trace.simplify true.
theorem strengthenPost : ∀ (R : absState) (P : absState) (Q : absState) (C : com),
{{ P }} C {{ Q }} →
(forall st, Q st → R st) →
{{ P }} C {{ R }} := begin
intros, unfold hoare_triple at a, unfold absExecute at a,
unfold hoare_triple, unfold absExecute,
intros,
specialize a st st' i x,
simp, simp at a,
have hh:((∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st C st')) ∧
((ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st C st'
func_result.NoResult →
realizeState Q st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st C st'
(func_result.Return x) →
realizeState absNone st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st C st'
(func_result.Exception i x) →
absEval (st'.snd) (λ (x : env), 0) = x ∧ realizeState absNone st'))),
apply a, apply a_2,
cases hh, split, apply hh_left,
cases hh_right, split, intros, apply a_1, apply hh_right_left,
apply a_3, cases hh_right_right, split, intros,
exfalso, unfold realizeState at hh_right_right_left,
unfold absNone at hh_right_right_left,
apply hh_right_right_left, apply a_3,
intros, exfalso,unfold realizeState at hh_right_right_right,
unfold absNone at hh_right_right_right,
simp at hh_right_right_right,
apply hh_right_right_right, apply a_3
end
theorem nilmem {t} (x : t) : x ∈ @list.nil t=false :=
begin
simp
end
theorem rsfalse { st : imp_state} : realizeState absNone st=false :=
begin
unfold realizeState, unfold absNone
end
theorem andfalse { a : Prop } : (a ∧ false)=false :=
begin
simp
end
theorem compose : forall (P:absState) c1 c2 Q R,
{{ P }} c1 {{ Q }} →
{{ Q }} c2 {{ R }} →
{{ P }} (com.Seq c1 c2) {{ R }} := begin
intros, unfold hoare_triple at a, unfold hoare_triple at a_1,
unfold absExecute at a, unfold absExecute at a_1,
unfold hoare_triple, unfold absExecute,
intros,
simp at a_1, simp at a,
simp,
simp only [rsfalse] at a, simp only [andfalse] at a,
simp only [rsfalse] at a_1, simp only [andfalse] at a_1,
have aaa:(∀ (st' : imp_state), (∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1
st')) ∧
((ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
func_result.NoResult →
realizeState Q st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
(func_result.Exception i x) →
false))),
intros, apply a, apply a_2,
split,
have aaa2:( ∀ (st' : imp_state),
(∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1
st')) ∧
((ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
func_result.NoResult →
realizeState Q st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) st c1 st'
(func_result.Exception i x) →
false))), apply aaa,
specialize aaa st', cases aaa, cases aaa_left, cases aaa_left_h,
cases aaa_left_h_w,
have aa1:((∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) aaa_left_w c2
st')) ∧
((ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) aaa_left_w c2 st'
func_result.NoResult →
realizeState R st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) aaa_left_w c2 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) aaa_left_w c2
st'
(func_result.Exception i x) →
false))), apply a_1,
specialize aaa2 aaa_left_w, cases aaa2, cases aaa2_right,
apply aaa2_right_left, apply aaa_left_h_h,
cases aa1, cases aa1_left, cases aa1_left_h,
existsi aa1_left_w, existsi aa1_left_h_w,
apply ceval.Seq1, apply aaa_left_h_h,
--specialize a_1 aaa_left_w st' i x,
apply aa1_left_h_h,
existsi _, existsi _,
apply ceval.Seq2, apply aaa_left_h_h,
existsi _, existsi _,
apply ceval.Seq3, apply aaa_left_h_h,
split,
intros,
cases a_3,
specialize aaa a_3_st', cases aaa, cases aaa_right,
specialize a_1 a_3_st' st' i x,
have hh:(realizeState Q a_3_st' → (ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
func_result.NoResult) →
realizeState R st'),
intros,
have hhh:((∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2
st')) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
func_result.NoResult →
realizeState R st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Exception i x) →
false)), apply a_1, apply a_3,
cases hhh, cases hhh_right,
apply hhh_right_left, apply a_4,
apply hh, apply aaa_right_left, apply a_3_a, apply a_3_a_1,
split, intros, unfold realizeState, unfold absNone,
cases a_3,
specialize aaa a_3_st', cases aaa, cases aaa_right,
specialize a_1 a_3_st' st' i x,
have hh:((∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2
st')) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
func_result.NoResult →
realizeState R st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Exception i x) →
false)), apply a_1, apply aaa_right_left, apply a_3_a,
cases hh, cases hh_right, cases hh_right_right,
apply hh_right_right_left, apply a_3_a_1,
specialize aaa st',
cases aaa, cases aaa_right, cases aaa_right_right,
apply aaa_right_right_left, apply a_3_a,
intros, exfalso,
cases a_3,
specialize aaa a_3_st', cases aaa, cases aaa_right,
specialize a_1 a_3_st' st' i x,
have hh:((∃ (st' : imp_state),
Exists
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2
st')) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
func_result.NoResult →
realizeState R st') ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Return x) →
false) ∧
(ceval (λ (x : ident) (y : imp_state) (z : list ℕ) (a : imp_state) (b : func_result), false) a_3_st' c2 st'
(func_result.Exception i x) →
false)), apply a_1, apply aaa_right_left, apply a_3_a,
cases hh, cases hh_right, cases hh_right_right,
apply hh_right_right_right, apply a_3_a_1,
specialize aaa st',
cases aaa, cases aaa_right, cases aaa_right_right,
apply aaa_right_right_right, apply a_3_a
end
meta def evaluate_aeval_helper : expr → expr
| `(aeval %%e (aexp.Num %%x)) := x
| `(aeval %%e (aexp.Var %%v)) := e v
| `(aeval %%e (aexp.Plus %%x %%y)) :=
`((%%(evaluate_aeval_helper `(aeval %%e %%x))) +
(%%(evaluate_aeval_helper `(aeval %%e %%y))))
| `(aeval %%e (aexp.Minus %%x %%y)) :=
`((%%(evaluate_aeval_helper `(aeval %%e %%x))) -
(%%(evaluate_aeval_helper `(aeval %%e %%y))))
| `(aeval %%e (aexp.Mult %%x %%y)) :=
`((%%(evaluate_aeval_helper `(aeval %%e %%x))) *
(%%(evaluate_aeval_helper `(aeval %%e %%y))))
| `(aeval %%e (aexp.Eq %%x %%y)) :=
`((%%(evaluate_aeval_helper `(aeval %%e %%x))) =
(%%(evaluate_aeval_helper `(aeval %%e %%y))))
| `(aeval %%e (aexp.Le %%x %%y)) :=
`(%%(evaluate_aeval_helper `(aeval %%e %%x))≤
%%(evaluate_aeval_helper `(aeval %%e %%y)))
| `(aeval %%e (aexp.Land %%x %%y)) :=
`(if ((aeval %%e %%x)=0) then 0 else (aeval %%e %%y))
--| `(aeval %%e (aexp.Land %%x %%y)) := `(if (aeval %%e %%x)=0 then 0 else (aeval %%e %%y))
| `(aeval %%e (aexp.Lor %%x %%y)) := `(if (aeval %%e %%x)=0 then (aeval %%e %%y) else (aeval %%e %%x))
| `(aeval %%e (aexp.Lnot %%x)) := `(if (aeval %%e %%x)=0 then 1 else 0)
| `(aeval %%e A0) := `(0)
| `(aeval %%e A1) := `(1)
| `(aeval %%e A2) := `(2)
| `(aeval %%e A3) := `(3)
| `(aeval %%e A4) := `(4)
| `(aeval %%e A5) := `(5)
| `(aeval %%e A6) := `(6)
| (expr.app a b) := expr.app (evaluate_aeval_helper a) (evaluate_aeval_helper b)
| (expr.lam v b t e) := expr.lam v b (evaluate_aeval_helper t) (evaluate_aeval_helper e)
| (expr.pi v b t e) := expr.pi v b (evaluate_aeval_helper t) (evaluate_aeval_helper e)
| x := x
meta def evaluate_aeval : tactic unit :=
do { t ← target,
tgt ← instantiate_mvars t,
--trace tgt.to_raw_fmt,
nt ← some (evaluate_aeval_helper tgt),
--trace nt.to_raw_fmt,
change nt }
--theorem xx: 1=(2,2).fst :=
--begin
-- do {
-- xxx ← target,
-- trace xxx.to_raw_fmt,
-- admit
-- }
--end
set_option eqn_compiler.max_steps 9999
set_option timeout 10000
meta def simplify_override_helper : expr → expr
| `(λ st, (absCompose %%l %%r)
(@prod.mk
(@prod.fst st)
(override (@prod.snd st) %%vv %%ee))) :=
(expr.app (expr.app `(absCompose)
(expr.lam "st" binder_info.default `(imp_state)
(expr.app
l
(expr.app (expr.app `(@prod.mk heap env)
(expr.app `(@prod.fst heap env) (expr.var 0)))
(expr.app (expr.app (expr.app `(@override)
(expr.app `(@prod.snd heap env) (expr.var 0))) vv) ee)
))))
(expr.lam "st" binder_info.default `(imp_state)
(expr.app
l
(expr.app (expr.app `(@prod.mk heap env)
(expr.app `(@prod.fst heap env) (expr.var 0)))
(expr.app (expr.app (expr.app `(@override)
(expr.app `(@prod.snd heap env) (expr.var 0))) vv) ee)
))))
| (expr.app a b) := expr.app (simplify_override_helper a) (simplify_override_helper b)
| (expr.lam v b t e) := expr.lam v b (simplify_override_helper t) (simplify_override_helper e)
| (expr.pi v b t e) := expr.pi v b (simplify_override_helper t) (simplify_override_helper e)
| x := x
meta def simplify_override_helperb : expr → expr
| `(λ st, (absExists (λ (v:%%t), %%e))
(@prod.mk (@prod.fst st) (override (@prod.snd st) %%vv %%ee))) :=
(expr.app `(@absExists %%t)
(expr.lam "v" binder_info.default t
(expr.lam "st" binder_info.default `(imp_state)
(expr.app
(expr.lower_vars (expr.lift_vars e 0 1) 2 1)
(expr.app
(expr.app
`(@prod.mk heap env)
(expr.app `(@prod.fst heap env) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
`(@prod.snd heap env)
(expr.var 0)))
vv) ee))
)
)))
| (expr.app a b) := expr.app (simplify_override_helperb a) (simplify_override_helperb b)
| (expr.lam v b t e) := expr.lam v b (simplify_override_helper t) (simplify_override_helperb e)
| (expr.pi v b t e) := expr.pi v b (simplify_override_helperb t) (simplify_override_helperb e)
| x := x
--meta def q : ℕ → (ℕ → ℕ)
--| _ := (λ (s:ℕ), s) 3.
--theorem test : 1=2 :=
--begin
-- do {
-- a ← some (q 0),
-- trace "abc",
-- --trace (a.to_raw_format),
-- b ← to_expr (``(λ (sss:ℕ), sss)),
-- trace b.to_raw_fmt,
-- admit
-- }
--end
meta def simplify_override_helper' : expr → expr
| (expr.lam st b stt
(expr.app
(expr.app
(expr.app
`(absCompose)
l)
r)
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app
(expr.app (expr.app pf hhha) eeea)
(expr.var 0)))
(expr.app
(expr.app
(expr.app
`(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv)
ee)))) :=
(expr.app (expr.app `(absCompose)
(expr.lam st b stt
(expr.app
l
(expr.app (expr.app (expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app (expr.app (expr.app ps hhhb) eeeb)
(expr.var 0))) vv) ee)
))))
(expr.lam st b stt
(expr.app
r
(expr.app (expr.app (expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app (expr.app (expr.app ps hhhb) eeeb)
(expr.var 0))) vv) ee)
))))
| (expr.app a b) := expr.app (simplify_override_helper' a) (simplify_override_helper' b)
| (expr.lam v b t e) := expr.lam v b (simplify_override_helper' t) (simplify_override_helper' e)
| (expr.pi v b t e) := expr.pi v b (simplify_override_helper' t) (simplify_override_helper' e)
| x := x
meta def simplify_override_helper2 : expr → expr
| (expr.lam st b stt
(expr.app (expr.app (expr.app ex ext)
(expr.lam vvv bb vtt e))
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv)
ee)))) := (expr.app (expr.app ex ext)
(expr.lam vvv bb vtt
(expr.lam st b stt
(expr.app
(expr.lower_vars (expr.lift_vars e 0 1) 2 1)
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv) ee))
)
)))
| (expr.app a b) := expr.app (simplify_override_helper2 a) (simplify_override_helper2 b)
| (expr.lam v b t e) := expr.lam v b (simplify_override_helper2 t) (simplify_override_helper2 e)
| (expr.pi v b t e) := expr.pi v b (simplify_override_helper2 t) (simplify_override_helper2 e)
| x := x
meta def replace_varn_helper : ℕ → expr → expr → expr
| n r (expr.var nn) := if n=nn then r else (expr.var nn)
| n r (expr.app a b) := expr.app (replace_varn_helper n r a) (replace_varn_helper n r b)
| n r (expr.lam v b t e) := expr.lam v b (replace_varn_helper (n+1) r t) (replace_varn_helper (n+1) r e)
| n r (expr.pi v b t e) := expr.pi v b (replace_varn_helper n r t) (replace_varn_helper n r e)
| n r x := x
meta def simplify_tree_helper : expr → expr
| (expr.lam st bb stt
(expr.app
(expr.app
(expr.app
(expr.app
(expr.app
tree
(expr.lam v b t e))
nn)
fff)
fr)
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv)
ee)))) :=
(expr.app
(expr.app
(expr.app
(expr.app
tree
(expr.lam v b t
(replace_varn_helper 0
(expr.app (expr.app (expr.app `(override)
(expr.var 0))
vv)
ee)
(expr.lower_vars e 2 1))
))
(expr.lower_vars nn 1 1))
(expr.lower_vars fff 1 1))
(expr.lower_vars fr 1 1))
| (expr.app a b) := expr.app (simplify_tree_helper a) (simplify_tree_helper b)
| (expr.lam v b t e) := expr.lam v b (simplify_tree_helper t) (simplify_tree_helper e)
| (expr.pi v b t e) := expr.pi v b (simplify_tree_helper t) (simplify_tree_helper e)
| x := x
meta def beq_exp : expr → expr → bool
| a b := ff
meta def update_state_reference : ℕ → expr → option expr
| n (expr.app (expr.app (expr.app ps hhh) eee) (expr.var (n1))) :=
if (n+1)=n1 then some (expr.var n) else none
| n (expr.var n1) :=
if (n+1)=n1 then none else some (expr.var n1)
| n (expr.app a b) := match update_state_reference n a with
| none := none
| some aa := match update_state_reference n b with
| none := none
| some bb := (expr.app aa bb)
end
end
| n (expr.lam v b t e) := match update_state_reference (n+1) t with
| none := none
| some aa := match update_state_reference (n+1) e with
| none := none
| some bb := (expr.lam v b aa bb)
end
end
| n (expr.pi v b t e) := match update_state_reference (n+1) t with
| none := none
| some aa := match update_state_reference (n+1) e with
| none := none
| some bb := (expr.pi v b aa bb)
end
end
| n x := some x
meta def simplify_override_predicate_helper : expr → expr
| (expr.lam st b stt
(expr.app
(expr.app predicate (expr.lam eev bb eet prr))
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv)
ee)))) :=
match update_state_reference 0 (replace_varn_helper 0
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv) ee)
prr) with
| some r := (expr.app predicate (expr.lam eev bb eet
(expr.lower_vars r 2 1)))
| none := (expr.lam st b stt
(expr.app
(expr.app predicate (expr.lam eev bb eet prr))
(expr.app
(expr.app
(expr.app (expr.app pm hhh) eee)
(expr.app (expr.app (expr.app pf hhha) eeea) (expr.var 0)))
(expr.app (expr.app (expr.app `(override)
(expr.app
(expr.app (expr.app ps hhhb) eeeb)
(expr.var 0)))
vv)
ee))))
end
| (expr.app a b) := expr.app (simplify_override_predicate_helper a) (simplify_override_predicate_helper b)
| (expr.lam v b t e) := expr.lam v b (simplify_override_predicate_helper t) (simplify_override_predicate_helper e)
| (expr.pi v b t e) := expr.pi v b (simplify_override_predicate_helper t) (simplify_override_predicate_helper e)
| x := x
meta def xxx : expr → expr
| e := `(absCompose absNone absNone (empty_heap,empty_env)).
meta def simplify_override : tactic unit :=
do { t ← target,
tgt ← instantiate_mvars t,
trace "input333333",
trace tgt.to_raw_fmt,
nt ← some (simplify_override_helper tgt),
trace "output prelim",
trace nt.to_raw_fmt,
trace "testit3",
qq ← some (xxx tgt),
trace qq.to_raw_fmt,
assert `xxx nt,swap,admit
}
meta def simplify_override2 : tactic unit :=
do { t ← target,
tgt ← instantiate_mvars t,
trace "input",
trace tgt.to_raw_fmt,
nt ← some (simplify_override_helperb tgt),
trace "output",
trace nt.to_raw_fmt,
trace "testit112",
assert `xxx nt,swap,admit
}
meta def simplify_override_predicate : tactic unit :=
do { t ← target,
tgt ← instantiate_mvars t,
trace "input1",
trace tgt.to_raw_fmt,
nt ← some (simplify_override_predicate_helper tgt),
trace "output2",
trace nt.to_raw_fmt,
trace "testit",
assert `xxx nt,swap,admit
}
meta def simplify_tree : tactic unit :=
do { t ← target,
tgt ← instantiate_mvars t,
trace "input1",
trace tgt.to_raw_fmt,
nt ← some (simplify_tree_helper tgt),
trace "output2",
trace nt.to_raw_fmt,
trace "testit",
assert `xxx nt,swap,admit
}
@[simp] theorem dist_conj (a : absState) (b : absState) (f : imp_state → imp_state) (st : imp_state) :
(absCompose a b) (f st) = (absCompose (λ st, a (f st)) (λ st, b (f st))) st :=
begin
admit
end
@[simp] theorem dist_exists_lambda (t:Type) (a: imp_state → Prop) (st : imp_state) (f : imp_state → imp_state):
absExists (λ (v:t), a) (f st)=absExists (λ (v:t), (λ st, a (f st))) st :=
begin
admit
end
@[simp] theorem dist_absPredicate (f: env → Prop) (v : ident)
(e : ℕ) (st : imp_state) :
absPredicate f (override_state v e st)=
(absPredicate (λ env, f (override env v e)) st) :=
begin
admit
end
@[simp] theorem dist_absTree (r : env → ℕ) (s : ℕ) (f : list ℕ)
(st : imp_state) (v : ident) (e : ℕ)
(vv : Value) :
(absTree r s f vv) (override_state v e st)=
(absTree (λ ee, r (override ee v e)) s f vv) st :=
begin
admit
end
@[simp] theorem dist_absExistsAbsTree (r : env → ℕ) (s : ℕ) (f : list ℕ)
(st : imp_state) (v : ident) (e : ℕ) :
absExists (absTree r s f) (override_state v e st)=
absExists (absTree (λ ee, r (override ee v e)) s f) st :=
begin
admit
end