Skip to content

Latest commit

 

History

History

practicum-4

Practicum 4: Exploring Data

Learning objectives:

  • Attribute transformations (normalization, binarization, discretization)
  • Proximity calculations
  • Computing summary statistics (mean, median, range, variance, etc.)
  • Visualization (histograms, scatter plots, box plots)

Exercises

  1. Normalizing values between 0 and 1

  2. Computing the similarity of binary vectors

  3. Discretization

  4. Finding k-nearest neighbors using Eucledian distance

  5. Computing summary statistics on the Iris dataset

  6. Computing summary statistics using numpy

  7. Visualizing Iris data

References