-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEden
1616 lines (1266 loc) · 71.4 KB
/
Eden
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#import required packages
import pandas as pd
import numpy as np
import scipy
import statsmodels.api as sm
import datetime
import statsmodels.formula.api as smf
import operator
import itertools
from scipy.stats import chi2
#df_adv = pd.read_csv("EdenTesting.csv")
CurrentDate = datetime.datetime.now()
CurrentYear=CurrentDate.year
SeasonDictionary={'Monthly': 12, 'Quarterly': 4, 'Yearly':1}
MonthList=['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
QuarterList=['1','2','3','4']
AllBinaryList=["January","February","March","April","May","June","July","August","September","October","November","December","Quarter 1","Quarter 2","Quarter 3","Quarter 4"]
SeasonalWords={'Quarterly':'Quarter','Monthly':'Month'}
MonthDictionary={1:"January",2:"February",3:"March",4:"April",5:"May",6:"June",7:"July",8:"August",9:"September",10:"October",11:"November",12:"December"}
QuarterDictionary={1:"Quarter 1",2:"Quarter 2",3:"Quarter 3",4:"Quarter 4"}
#Need to work on what to do if users enter a categorical variable or a non int/float like $,
#Finding the target dependent variable
def FindingDependent():
ListVariables=[]
Counter=1
AskUserTarget=input("What is the variable name you are trying to predict? ")
while AskUserTarget not in list(df_adv):
print("You made a typo")
AskUserTarget=input("What is the variable name you are trying to predict? ")
return AskUserTarget
#Making sure they enter a correct start year
def GettingStartYear():
AskUserStartYear=input("What year does your data start? ")
while True:
if 1900<int(AskUserStartYear)<=CurrentYear:
break
else:
print("That year is either too long ago or hasn't happened yet, try again!")
AskUserStartYear=input("What year does your data start? ")
return AskUserStartYear
#taking out their time variables
def TakingOutTime():
TimeVariablesList=[]
NumberTimeVariables=input("How many time variables to you have recorded in your data?")
#protecting from them taking out all variables other than dependant
while int(NumberTimeVariables)>(len(list(df_adv))-1):
print("You entered more variables than you have!")
NumberTimeVariables=input("How many time variables to you have recorded in your data?")
#actually removing time variables
for X in range(int(NumberTimeVariables)):
AskUserTimeVariablesToDrop=input("Do you currently have any time information in your dataset?")
#protecting them from entering a variable not in their dataset
while AskUserTimeVariablesToDrop not in list(df_adv):
print("That variable does not exist in your dataset.You have made a typo, try again!")
AskUserTimeVariablesToDrop=input("Do you currently have any time information in your dataset?")
else:
TimeVariablesList=TimeVariablesList+[AskUserTimeVariablesToDrop]
return TimeVariablesList
#Adding Time to capture Trend
#Generates a time series of 1....the total number of rows they have in their dataset
def AddingTrendVariable():
Time=0
TimeList=[]
for X in range(len(df_adv)):
Time=Time+1
TimeList=TimeList+[Time]
#adds this column to their dataset
df_adv['Time']=TimeList
#Making Categorical Variables Binary
def CategoricalBinary(AskUserVariable,CategoricalVariable):
Stopper=0
CategoricalList=[]
#For each unique value in the categorical variable
for X in CategoricalVariable:
#Added a stopper so we avoid the dummy variable trap
if Stopper==0:
Stopper=1
else:
#creating a column in the dataframe that has the same values as the categorical variable
df_adv[X]=df_adv[AskUserVariable]
#if it is equal to that unqiue value in the column, it is equal to 1 in the new column created for that unique value
df_adv.loc[df_adv[AskUserVariable] == X, X] = 1
#if it is not equal to that unqiue value in the column, it is equal to 0 in the new column created for that unique value
df_adv.loc[df_adv[AskUserVariable] != X, X] = 0
#Creating a list of the actually created dummy variables, again to avoid the dummy variable trap (m-1)
CategoricalList=CategoricalList+[X]
return CategoricalList
def Categorical():
CategoricalLists=[]
#Find out if the user has any variables with letters instead of numeric values
AskUserCat=input("Do you have any variables that are described by words and not numbers (i.e Quality is Low, Medium, High)? Y/N ")
print(df_adv.head())
TextVariables=[]
if AskUserCat=="Y":
AskUserNumber=input("How many word variables do you have? ")
for X in range(int(AskUserNumber)):
AskUserVariable=input("Which variable? ")
#Making sure they list a variable actually in their data
while AskUserVariable not in list(df_adv):
print("That variable is not in the data you gave me")
AskUserVariable=input("Which variable? ")
TextVariables=TextVariables+[AskUserVariable]
#Finding the unique values in the variable (ex. High, Medium, Low)
CategoricalVariable=df_adv[AskUserVariable].unique()
#Creating unique binary variables for each possible value of that text column
CategoricalList=CategoricalBinary(AskUserVariable,CategoricalVariable)
#Creating a list of the actually created dummy variables for each entered categorical variable, again to avoid the dummy variable trap (m-1)
CategoricalLists=CategoricalLists+CategoricalList
#Deleteing the old column containing text values
del df_adv[AskUserVariable]
return CategoricalLists,TextVariables
#Addressing misbehaving datatypes like %,$,commas, etc
#Finding the misbehavior
def DataMisbehavior():
Index=0
print(df_adv.dtypes)
Columns=list(df_adv)
Misbehavior=[]
for X in df_adv.dtypes:
if X!='int64' and X!='float64':
Variable=Columns[Index]
Misbehavior=Misbehavior+[Variable]
print("I have detected that "+str(Variable)+" is not a numeric variable, i.e it contains letters, dollar signs, commas, percentages, etc.")
Index=Index+1
print(Misbehavior)
return Misbehavior
def ReplaceMultiple(mainString, toBeReplaces, newString):
# Iterate over the strings to be replaced
for elem in toBeReplaces :
print(elem)
# Check if string is in the main string
if elem in mainString["Price"] :
# Replace the string
mainString = mainString.replace(elem, newString)
print(mainString)
return mainString
#Fixing it
def FixingBehavior(Misbehavior):
CategoricalLists=Categorical()
TextVariables=CategoricalLists[1]
BadCharacters=['$',',']
for X in Misbehavior:
if X not in TextVariables:
print(X)
for i in BadCharacters:
X=df_adv[str(X)].str.replace(i,'')
print(X)
print(df_adv['Price'].isin(['$']))
#Isolating the explanatory variables before Binary. To avoid specification bias, i.e that some important variable will be left out and its correlation to another variable will magnify the importance of another variable, I have chosen to not give the user an option to omit variables in their file. All financial information is likely related to the target variable, and it does not hurt to add the variable so long as it is accounted for later i.e a penalty for additional variables
def ExplanatoryWithoutBinary(AskUserTarget,TimeVariablesList):
ListBeforeVariables=[]
for X in list(df_adv):
if X!=AskUserTarget and X not in TimeVariablesList:
ListBeforeVariables=ListBeforeVariables+[X]
return ListBeforeVariables
#Adding Dummy Variables for Seasonality
#Counter=0
def DummyGenerator(N,Period):
Counter=0
NewValues=[]
#adding the cushion of zeros before and after the start time indicated by a 1
while Counter<SeasonDictionary[Period]:
Before=int(N)-1
After=SeasonDictionary[Period]-int(N)
listofzerosbefore = [0] * int(Before)
listofzerosafter = [0] * int(After)
AdditionalPadding=listofzerosbefore+[1]+listofzerosafter
Counter=Counter+1
Cutoff=int(N)-1
#the binary variable starts in the first month entered by user
Starter=AdditionalPadding[Cutoff:]
Length=int(len(df_adv)/SeasonDictionary[Period])
LengthTrue=len(df_adv)
#this means they have less that a single year of data
if Length<1:
print("You need more data, sorry! I only work well if you have at least 1 year or more worth of data")
#this means the length of the data is the an exact calender year
if Length==1:
AdditionalPadding=AdditionalPadding
#this means addtional padding must be added to replicate pattern of binary variables for other years
elif Length>=2:
#deals with monthly/quarterly lengths
if int(N)<9:
for X in range(Length):
if X==0: #this means it is the starting string for the data i.e starts in period 2 so 100
NewValues=NewValues+Starter
else: #this means that after the first starter it adds padding accordingly so after 100 - 0100 -0100
NewValues=NewValues+AdditionalPadding
else:
for X in range(Length+1):
if X==0: #when its greater than 9 the start legth gets funny so needed this block to accomdate
NewValues=NewValues+Starter
else:
NewValues=NewValues+AdditionalPadding
LeftOver=LengthTrue-len(NewValues)
FullString=AdditionalPadding[:LeftOver]
AdditionalPadding=NewValues+FullString
return(N,AdditionalPadding)
#so, the dummy generator will start with the period you entered and the last period will be the intercept
#Also getting a list of dummies DummyNames[] for the model builder later
def CreatingDummies(N,Period):
DummyNames=[]
#comes from DummyGenerator (N,Period)
InitialSequence=DummyGenerator(N,Period)
#this is grabbing the additonal binary padding sequence from Dummy Generator
ModifiedSequence=InitialSequence[1]
#Number of dummy variables is always seasonal periods-1
DummyLength=SeasonDictionary[Period]-1
for X in range(DummyLength):
if X==0: #this generates a column in your data of binary variables for the first period you entered
#if the Period is Monthly, it picks names for the binary variables from the MonthDictionary
if SeasonalWords[Period]=="Month":
NamingDumbies=str(MonthDictionary[int(N)])
#NamingDumbies="Dummy"+str(SeasonalWords[Period])+str(N)
DummyNames=DummyNames+[NamingDumbies]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
else:
NamingDumbies=str(QuarterDictionary[int(N)])
DummyNames=DummyNames+[NamingDumbies]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
else: #this creates different name columns for the different binary variables for different periods
if SeasonalWords[Period]=="Month":
if N<=12:
NamingDumbies=str(MonthDictionary[int(N)])
DummyNames=DummyNames+[NamingDumbies]
ModifiedLength=len(ModifiedSequence)-1
ModifiedSequence=[0]+ModifiedSequence[:ModifiedLength]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
else:
N=1
NamingDumbies=str(MonthDictionary[int(N)])
DummyNames=DummyNames+[NamingDumbies]
ModifiedLength=len(ModifiedSequence)-1
ModifiedSequence=[0]+ModifiedSequence[:ModifiedLength]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
else:
if N<=4:
NamingDumbies=str(QuarterDictionary[int(N)])
DummyNames=DummyNames+[NamingDumbies]
ModifiedLength=len(ModifiedSequence)-1
ModifiedSequence=[0]+ModifiedSequence[:ModifiedLength]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
else:
N=1
NamingDumbies=str(QuarterDictionary[int(N)])
DummyNames=DummyNames+[NamingDumbies]
ModifiedLength=len(ModifiedSequence)-1
ModifiedSequence=[0]+ModifiedSequence[:ModifiedLength]
df_adv[NamingDumbies]=ModifiedSequence
N=int(N)+1
return(DummyNames)
def Seasonality():
#Highlighting Seasonality
AskUserSeason=input("How often is your data collected? Monthly/Quarterly/Yearly? " )
#Protecting them from entering a season Eden doesn't account for
while AskUserSeason not in SeasonDictionary:
print("You made a typo")
AskUserSeason=input("How often is your data collected? Monthly/Quarterly/Yearly?" )
#Finding out what month/quarter they started collecting their data in for dummy variables
#Chose not to include Yearly because it won't matter for seasonality
#---------------------------------
#Monthly
if AskUserSeason=='Monthly':
AskUserStartDate=input("What month did you start collecting your data? For example, if it was the first month of the year January, enter 1. If it was the last month of the year, December, enter 12")
#protecting them from entering a number that is for monthly 0 or >12
while AskUserStartDate not in MonthList:
print ("You have made an error")
AskUserStartDate=input("What month did you start collecting your data? For example, if it was the first month of the year January, enter 1. If it was the last month of the year, December, enter 12" )
#actually generating the dummy variables for their dataset correctly
DummyVariables=CreatingDummies(AskUserStartDate,'Monthly')
#---------------------------------
#Quarterly
if AskUserSeason=='Quarterly':
AskUserStartDate=input("What quarter did you start collecting your data? For example, if it was the first quarter of the year, enter 1. If it was the last quarter, enter 4" )
#protecting them from entering a number that is for Quarter 0 or >4
while AskUserStartDate not in QuarterList:
print ("You have made an error")
AskUserStartDate=input("What quarter did you start collecting your data? For example, if it was the first quarter of the year, enter 1. If it was the last quarter, enter 4" )
#actually generating the dummy variables for their dataset correctly
DummyVariables=CreatingDummies(AskUserStartDate,'Quarterly')
#---------------------------------
#Yearly
#For model builder ensuring no dummies are added for yearly
if AskUserSeason=='Yearly':
DummyVariables=[]
return DummyVariables
#Isolating the explanatory variables including binary. To avoid specification bias, i.e that some important variable will be left out and its correlation to another variable will magnify the importance of another variable, I have chosen to not give the user an option to omit variables in their file. All financial information is likely related to the target variable, and it does not hurt to add the variable so long as it is accounted for later i.e a penalty for additional variables
def ExplanatoryWithBinary(AskUserTarget,TimeVariablesList):
ListVariables=[]
for X in list(df_adv):
if X!=AskUserTarget and X not in TimeVariablesList:
ListVariables=ListVariables+[X]
return ListVariables
#In the ModelFitter(), the independent variable is regressed against the dependant in various shapes: log, linear, quadratic, cubic, inverse
#The shape yeilding the highest adjusted r^2 is the optimal relationship between the indepedent and the dependent
def ModelFitter(ListBeforeVariables,y):
#These Lists will contain the various adjusted R^2 for each shape
ListRSquareLinear=[]
ListRSquareLog=[]
ListRSquareQuad=[]
ListRSquareCub=[]
ListRSquareInverse=[]
#Types of shape being tested
Types=['Lin','Log','Quad','Cub','Inv']
Counter=0
#Creating a Dictionary associating each variable in each shape with the associated adjusted R^2
Dictionary={}
#Also generating a list of variables that couldn't be logged i.e contain zeros for later purposes with addressing multicolinearty via log-log or semi-log models
ListOfVariablesThatContainZeros=[]
for X in ListBeforeVariables: #For every variable thats not a dummy variable
X=df_adv[X] #Grabbing the independent variable from the dataframe
X = sm.add_constant(X) #Adding a constant
#-------------------------------------------------------------
#Try Linear
model = sm.OLS(y, X).fit()
Dictionary[Types[0]+ListBeforeVariables[Counter]]=model.rsquared_adj #Now in dictionary is LinIndepentVariable : adjusted R^2
ListRSquareLinear=ListRSquareLinear+[model.rsquared_adj] #Adjusted R^2 for each shape now in a list for the linear shape of different variables to find the max in the function below
#-------------------------------------------------------------
#try log
#A try except block is used in case of divide by zero errors in the uploaded sheet
#Numpy automatically gives error message for zero, I already dealt with this with the try except so I can safely ignore this
np.seterr(all='ignore')
try:
model = smf.ols(formula='y ~ np.log(X)', data=df_adv).fit()
Dictionary[Types[1]+ListBeforeVariables[Counter]]=model.rsquared_adj
ListRSquareLog=ListRSquareLog+[model.rsquared_adj]
except:
ListOfVariablesThatContainZeros=ListOfVariablesThatContainZeros+[X]
#-------------------------------------------------------------
#try parabolic
model = smf.ols(formula = 'y ~ X + I(X**2)', data = df_adv).fit()
ListRSquareQuad=ListRSquareQuad+[model.rsquared_adj]
Dictionary[Types[2]+ListBeforeVariables[Counter]]=model.rsquared_adj
#-------------------------------------------------------------
#try cubic
model = smf.ols(formula = 'y ~ X + I(X**2) + I(X**3)', data = df_adv).fit()
ListRSquareCub=ListRSquareCub+[model.rsquared_adj]
Dictionary[Types[3]+ListBeforeVariables[Counter]]=model.rsquared_adj
#-------------------------------------------------------------
#try Inverse
#A try except block is used in case of divide by zero errors in the uploaded sheet
try:
model = smf.ols(formula = 'y ~ I(1/X)', data = df_adv).fit()
ListRSquareInverse=ListRSquareInverse+[model.rsquared_adj]
Dictionary[Types[4]+ListBeforeVariables[Counter]]=model.rsquared_adj
except:
pass
#try exponential
# model = sm.OLS(y, X).fit()
# model=np.exp(model.params*X)
#ListRSquareExponential=ListRSquareExponential+[model.rsquared]
Counter=Counter+1
return Dictionary,ListRSquareLinear,ListRSquareLog,ListRSquareQuad,ListRSquareCub,ListRSquareInverse,ListOfVariablesThatContainZeros
def BestRSquare(ListRSquareLinear,ListRSquareLog,ListRSquareQuad,ListRSquareCub,ListRSquareInverse):
# Finding the largest adj R^2 for each variable of all the shapes from the lists made in ModelFitter()
# A try except block is used in case of divide by zero errors in the uploaded sheet means only Lin, Quad, Cub exist
#-------------------------------------------------------------
MaxRSquare=[]
for X in range(len(ListRSquareLinear)):
try:
MaxRSquare=MaxRSquare+[max(ListRSquareLinear[X],ListRSquareLog[X],ListRSquareQuad[X],ListRSquareCub[X],ListRSquareInverse[X])]
except:
MaxRSquare=MaxRSquare+[max(ListRSquareLinear[X],ListRSquareQuad[X],ListRSquareCub[X])]
return MaxRSquare
#It is a list of the best shapes selected from BestRSquare() and linked to the shape in the Dictionary in AssociatingShapeAndRSquare()
def AssociatingShapeAndRSquare(MaxRSquare,Dictionary):
#Finding Keys (shapes) in your Dictionary for the highest R^2 values in MaxRSquare
print("Your Best Shapes Are:")
BestShapes=[]
for X in MaxRSquare:
print(list(Dictionary.keys())[list(Dictionary.values()).index(X)])
BestShapes=BestShapes+[list(Dictionary.keys())[list(Dictionary.values()).index(X)]]
return BestShapes
def SMFAssembler(BestShapes,ListBeforeVariables):
#assembling the statement to go into the smf.ols regression
TotalFormula=str()
Counter=0
ListForGLS=[]
for X in BestShapes: #Best shapes looks like this ex. ['InvPrice', 'LinAdvetisement', 'CubRelated_Price', 'CubTime']
if X=='Lin'+str(ListBeforeVariables[Counter]): #If its linear in shape
Formula=str(ListBeforeVariables[Counter]) #Formula is just the variable because no transformation needed for linear regression
if Counter==0: #If it is the first Variable added to the formula, no "+" is needed between variables smf.ols("y ~ X +
TotalFormula=TotalFormula+Formula
else:
TotalFormula=TotalFormula+'+'+Formula
df_adv[str(X)]=df_adv[str(ListBeforeVariables[Counter])] #Creating a column in the dataframe that is LinXvariable transformed to the correct linear shape
ListForGLS=ListForGLS+[str(X)] #This is done so if GLS must be done, the column tranformed like that exists because there is only sm.GLS not smf.GLS
#print(df_adv[str(X)]) #It is then added to a list for the above described procedure
if X=='Quad'+str(ListBeforeVariables[Counter]): #If its quadratic in shape
Formula=str(ListBeforeVariables[Counter])+' + I('+str(ListBeforeVariables[Counter])+'**2) ' #Formula is the variable and the variable squared for OLS regression
if Counter==0: #If it is the first Variable added to the formula, no "+" is needed between variables smf.ols("y ~ X +
TotalFormula=TotalFormula+Formula
else:
TotalFormula=TotalFormula+'+'+Formula
ListForGLS=ListForGLS+[str(ListBeforeVariables[Counter])] #Variable name is then added to a list so if GLS must be done, the column is included because there is only sm.GLS not smf.GLS
df_adv[str(X)]=df_adv[str(ListBeforeVariables[Counter])]**2 #Creating a column in the dataframe that is just the Xvariable transformed by squaring it so it can be used for GLS regression
ListForGLS=ListForGLS+[str(X)] #Still want to include just the variable not trasnformed in the list for GLS
#print(df_adv[str(X)])
if X=='Cub'+str(ListBeforeVariables[Counter]): #If its cubic in shape
Formula=str(ListBeforeVariables[Counter])+' + I('+str(ListBeforeVariables[Counter])+'**2) + I('+str(ListBeforeVariables[Counter])+'**3)' #Formula is the variable, the variable squared, and the variable cubed for OLS regression
if Counter==0: #If it is the first Variable added to the formula, no "+" is needed between variables smf.ols("y ~ X +
TotalFormula=TotalFormula+Formula
else:
TotalFormula=TotalFormula+'+'+Formula
ListForGLS=ListForGLS+[str(ListBeforeVariables[Counter])] #Variable name is then added to a list so if GLS must be done, the column is included because there is only sm.GLS not smf.GLS
df_adv["Quad"+str(ListBeforeVariables[Counter])]=df_adv[str(ListBeforeVariables[Counter])]**2 #Creating a column in the dataframe that is just the Xvariable transformed by squaring it so it can be used for GLS regression
#print(df_adv["Quad"+str(ListBeforeVariables[Counter])])
ListForGLS=ListForGLS+["Quad"+str(ListBeforeVariables[Counter])] #It is then added to a list for the above described procedure
df_adv[str(X)]=df_adv[str(ListBeforeVariables[Counter])]**3 #Creating a column in the dataframe that is just the Xvariable transformed by cubing it so it can be used for GLS regression
#print((df_adv[str(X)]))
ListForGLS=ListForGLS+[str(X)] #Still want to include just the variable not trasnformed in the list for GLS
if X=='Log'+str(ListBeforeVariables[Counter]): #If its logarithmic in shape
Formula='np.log('+str(ListBeforeVariables[Counter])+')' #Formula is the variable logged for OLS regression
if Counter==0: #If it is the first Variable added to the formula, no "+" is needed between variables smf.ols("y ~ X +
TotalFormula=TotalFormula+Formula
else:
TotalFormula=TotalFormula+'+'+Formula
df_adv[str(X)]=np.log(df_adv[str(ListBeforeVariables[Counter])])#Creating a column in the dataframe that is just the Xvariable transformed by logging it so it can be used for GLS regression
#print((df_adv[str(X)]))
ListForGLS=ListForGLS+[str(X)] #It is then added to a list for the above described procedure
if X=='Inv'+str(ListBeforeVariables[Counter]): #If its inverse in shape
Formula='I(1/'+str(ListBeforeVariables[Counter])+')' #Formula is the 1/variable for OLS regression
if Counter==0: #If it is the first Variable added to the formula, no "+" is needed between variables smf.ols("y ~ X +
TotalFormula=TotalFormula+Formula
else:
TotalFormula=TotalFormula+'+'+Formula
df_adv[str(X)]=1/(df_adv[str(ListBeforeVariables[Counter])]) #Creating a column in the dataframe that is just the Xvariable transformed by taking its inverse so it can be used for GLS regression
#print((df_adv[str(X)]))
ListForGLS=ListForGLS+[str(X)] #It is then added to a list for the above described procedure
Counter=Counter+1 #Counter brings us through all the independent variables excluding the dummy variables
return TotalFormula,ListForGLS
def DummyBuilder(DummyVariables,TotalFormula):
#adding dummy variables to equation
for X in DummyVariables:
TotalFormula=TotalFormula+"+"+str(X)
return TotalFormula
#Getting interactioon Terms for Whites Test
def IsolatingMostBasicRelationship(ListForGLS,ListBeforeVariables):
TermsToInteract=[]
for X in ListForGLS:
ActualWord=X[3:]
if ActualWord in ListBeforeVariables and X[:3] != 'Cub':
TermsToInteract=TermsToInteract+[X]
if X in ListBeforeVariables:
TermsToInteract=TermsToInteract+[X]
return TermsToInteract
def GeneratingInteractions(TermsToInteract):
Interactions=list(itertools.combinations(TermsToInteract, 2))
ListOfInteractionTerms=[]
for X in Interactions:
TupleToList=list(X)
Interaction=TupleToList[0]+TupleToList[1]
ListOfInteractionTerms=ListOfInteractionTerms+[Interaction]
df_adv[Interaction]=df_adv[X[0]]*df_adv[X[1]]
return ListOfInteractionTerms
def BinaryInteractions(TermsToInteract,DummyVariables):
ListOfBinaryInteractions=[]
for Term in TermsToInteract:
for Month in DummyVariables:
Interaction=Term+Month
ListOfBinaryInteractions=ListOfBinaryInteractions+[Interaction]
df_adv[Interaction]=df_adv[Term]*df_adv[Month]
return ListOfBinaryInteractions
def IsolatingSignificantVariables(GLSAllVariables,AskUserConfidence,PValueDictionary,LevelOfSignificance):
SignificantVariables=[]
for X in GLSAllVariables:
# print(X)
if (float(PValueDictionary[X])/2.0)<=LevelOfSignificance[AskUserConfidence]:
SignificantVariables=SignificantVariables+[X]
#print(str(X)+" is signifant")
return SignificantVariables
def Loggable(ListOfVariablesThatContainZeros):
LogModel="Yes"
if len(ListOfVariablesThatContainZeros)>0:
LogModel="No"
print("Can't deal with multicolinearity by log log model")
return LogModel
#-------------------------------------------------------------------------------------------------
#Creating the Chi Square Test
def ChiSquaredCritical(p,df):
ChiSquaredCritical = chi2.ppf(p, df)
#print(ChiSquaredCritical)
#print(value)
# confirm with cdf (Chi-Squared Percent Point Function)
#p = chi2.cdf(value, df)
#print(p)
return ChiSquaredCritical
def HypothesisTest(Crit,Calc):
if Crit>=0:
if Calc>Crit:
Result="Reject Null"
else:
Result="FTR"
else:
if Calc<Crit:
Result="Reject Null"
else:
Result="FTR"
return Result
def ChiSquaredCalc(RSquare,n):
ChiSquaredCalc=RSquare*n
#print(ChiSquaredCalc)
return ChiSquaredCalc
#-------------------------------------------------------------------------------------------------
#Performing Whites Test For Heteroskedactitcy
#include the sqaures?
def WhitesTest(Residuals,n,p,df,y,GLSAllVariables,model,AllInteractionList,TrueVariables):
#e^2=a1+a2X2+a3X is an auxillary regression of the models variables agaianst the models errors square
ResidualsSquared=Residuals**2
#model = smf.ols(formula='ResidualsSquared ~ '+str(TotalFormula), data=df_adv).fit()
#auxillary regressions r^2
#print("***********************")
#print("In order to do a White's Test, we need all the interaction terms to be included, So I've done just that!")
#print("The goal is to examine the R^2, multiply by N and then run a Chi Test")
X=df_adv[GLSAllVariables]
X = sm.add_constant(X)
model = sm.OLS(ResidualsSquared,X).fit()
#print(model.summary())
#results = model
#model=sm.OLS(ResidualsSquared,GLSAllVariables)
RSquare=model.rsquared
#chi calc calculated as auxillary r^2 * number observations
ChiCalc=ChiSquaredCalc(RSquare,n)
#chi critcal comes from the chi table based on degrees of freedom which is number of explanatory variables except intercept and probability user selected
ChiCritical=ChiSquaredCritical(p,df)
#hypothesis test to see if chi crit < chi calc, thus there would be heteroskedacity
Test=HypothesisTest(ChiCritical,ChiCalc)
#You can decide for hetero if auxillary regression chi hypothesis test fails
#what R squared is high????
if Test=="Reject Null":
print("You have Heteroskedactitcy")
#NewResults=ModifiedGeneralizedLeastSquares(Residuals,Actual,Lagged,ListForGLS,y,X)
NewResults=ModifiedGeneralizedLeastSquares(y,TrueVariables)
model=NewResults
else:
print("You don't have heteroskedacticity")
model=model
return model
#The GLS procedure
def ModifiedGeneralizedLeastSquares(y,TrueVariables):
#-------------------------------------------------------------------------------------------------
#Assigning the tranformed independent variables as the indepedent variables in the GLS model
X=df_adv[TrueVariables]
X = sm.add_constant(X)
#This is my GLSAR model
glsar_model = sm.GLSAR(y, X, 1)
#olsmodel=sm.OLS(y,X)
#results = olsmodel.fit()
#print(results.summary())
#glsar_results = glsar_model.iterative_fit(1)
model=glsar_model.iterative_fit(1)
#Pvalues=model.pvalues
#print(Pvalues)
#Parameters=model.params
#CoefficientDictionary=dict(model.params)
#print(CoefficientDictionary)
#print("hdfgergeggrege")
#PValueDictionary=dict(model.pvalues)
#print(glsar_results.summary())
#---------
#print(model.summary())
#----------
#what values would be indicative of needing an AR process?
return model
def BreuschGodfreyTest(model,LevelOfSignificance,AskUserConfidence,y,TrueVariables,nlags=3,store=False):
BreuschGodfrey=sm.stats.diagnostic.acorr_breusch_godfrey(model, nlags, store)
BGTestStat=BreuschGodfrey[0]
BGPValue=BreuschGodfrey[1]
Results=HypothesisTest(LevelOfSignificance[AskUserConfidence],BGPValue)
if Results == "Reject Null":
#print(Results)
print("You have autocorrelation")
model=ModifiedGeneralizedLeastSquares(y,TrueVariables)
else:
model=model
return model
#------------------------------------------------------
#interpretations
def Significance(SignificantVariables,CoefficientDictionary,AskUserTarget,UserInquiry=1):
ActualWords=[]
for X in SignificantVariables:
if X not in AllBinaryList:
Message="one unit"
Effect=0
if X[:3]=='Cub':
PartialEffects=[]
ActualWord=X[3:]
ActualWords=ActualWords+[ActualWord]
PartialEffects=PartialEffects+[CoefficientDictionary[ActualWord]]
PartialEffects=PartialEffects+[CoefficientDictionary['Quad'+str(ActualWord)]]
PartialEffects=PartialEffects+[CoefficientDictionary['Cub'+str(ActualWord)]]
Effect=PartialEffects[0]+(2.0*PartialEffects[1]*UserInquiry)+(3.0*PartialEffects[2]*(UserInquiry**2))
elif X[:3]=="Lin":
ActualWord=X[3:]
ActualWords=ActualWords+[ActualWord]
Effect=CoefficientDictionary[str(X)]*UserInquiry
elif X[:3]=="Inv":
ActualWord=X[3:]
ActualWords=ActualWords+[ActualWord]
PartialEffect=-CoefficientDictionary[str(X)]*float(1/UserInquiry**2)
Effect=CoefficientDictionary[str(X)]
elif X[:3]=="Log":
#need to see how to log out quantity
ActualWord=X[3:]
ActualWords=ActualWords+[ActualWord]
Effect=CoefficientDictionary[str(X)]
#Ask dan
#Effect=(100.0*Effect)
Effect=(100.0*Effect*UserInquiry)
Message="1%"
elif X[:3]=="Qua":
PartialEffects=[]
ActualWord=X[4:]
ActualWords=ActualWords+[ActualWord]
if 'Cub'+str(ActualWord) not in SignificantVariables:
PartialEffects=PartialEffects+[CoefficientDictionary[ActualWord]]
PartialEffects=PartialEffects+[CoefficientDictionary['Quad'+str(ActualWord)]]
Effect=PartialEffects[0]+(2.0*PartialEffects[1]*UserInquiry)
else:
pass
if Effect>0 and UserInquiry==1:
print("A "+str(Message)+" increase in "+str(ActualWord)+" results in a "+str(round(Effect,2))+ " unit increase in "+str(AskUserTarget))
elif Effect<0 and UserInquiry==1:
print("A "+str(Message)+" increase in "+str(ActualWord)+" results in a "+str(round(Effect,2))+ " unit decrease in "+str(AskUserTarget))
if Effect>0 and UserInquiry!=1:
print("If you use "+str(UserInquiry)+" units of "+str(ActualWord)+", this results in a "+str(round(Effect,2))+ " unit increase in "+str(AskUserTarget))
elif Effect<0 and UserInquiry!=1:
print("If you use "+str(UserInquiry)+" units of "+str(ActualWord)+", this results in a "+str(round(Effect,2))+ " unit decrease in "+str(AskUserTarget))
else:
pass
return ActualWords
def BinarySignificance(SignificantVariables,AskUserTarget,CoefficientDictionary):
for X in AllBinaryList: # AllBinaryList=["January","February","March","April","May","June","July","August","September","October","November","December","Quarter 1","Quarter 2","Quarter 3","Quarter 4"]
if X in SignificantVariables: #If eden has found them to be significant at the user selected confidence it is in a List i.e [June,July,December]
Effect=CoefficientDictionary[X] #There is a dictionary of the variables names and their coefficents (i.e {linadvertisement:5690, June:771,etc})
if Effect>0: #If its a positive change, use the word "increase"
print("When it is "+str(X)+" there is a "+str(round(Effect,2))+ " unit increase in "+str(AskUserTarget))
else: #If its a negative change, use the word "decrease"
print("When it is "+str(X)+" there is a "+str(round(Effect,2))+ " unit decrease in "+str(AskUserTarget))
#------------------------------------------------------------
#Now we want the user to be able to play around with varying the amount of inputs, cause the could incorrectly surmise a constant rate of growth if they had,
#say a cubic variable a 2 unit increae is not the same as 2 1unit increase
#ask dan to check my partial effects :)
def VaryingInputs(AskUserVaryingInputs,ActualWords,ListForGLS,AskUserConfidence,CoefficientDictionary,AskUserTarget):
if AskUserVaryingInputs=="Y": #If the user says yes I'd like to vary inputs, then
AskUserHowManyVariables=int(input("How many variables are you looking to calculate?"))
while AskUserHowManyVariables>len(ActualWords): #making sure they are only asking about the max number of variables significant at their selected level of confidence
print("The maximum number of variable you can explore is "+str(len(ActualWords))+" because this is the number of varibles I can predict with "+str(AskUserConfidence)+"% confidence ")
AskUserHowManyVariables=int(input("How many variables are you looking to calculate?"))
for X in range(AskUserHowManyVariables):
print("Please enter one of the following")
print(str(ActualWords)) #Showing them their signigficnat variables
AskUserVariable=input("Which Variable ")
while AskUserVariable not in ActualWords: #making sure they are only asking about variables significant at their selected level of confidence
print("This variable is not statistically significant at the "+str(AskUserConfidence)+"% level.")
print("Please enter one of the following")
print(str(ActualWords))
AskUserVariable=input("Which Variable? ")
else:
AskUserValueOfX=int(input("How many units of "+str(AskUserVariable)+" where you planning on utilizing? ")) #Ask them what number they are testing i.e 50 units of advertising
#They are telling us the actual variable name, i.e advetisement
#We need to know what shape Eden picked for that variable so
#We get back the shape from out ListForGLS which contains [linadvertisement,cubrelatedprice,quadrelatedprice,logsubstitue,etc]
for X in ListForGLS:
if AskUserVariable==X[4:]: #if the letters after the first 4 are the variable name the user is asking about, we know there is a Quadratic relationship (i.e QuadPrice)
#However, there could aslo be a cubic term!
if "Cub"+str(AskUserVariable) not in ListForGLS:
#if there is not also a cubic term in the ListForGLS, then there must be only a quadratic, not cubic relationship
#i.e cubPrice and quadPrice could both be in ListForGLS, in which case we want it to run through the procedure for cubic not quadratic in Significance(AskUserVariable,AskUserValueOfX)
#Because cubPrice not in ListGLS, we know there is only a quadratic term.
AskUserVariable=[X]
#Now AskUserVariable is equal to i.e QuadPrice instead of just the user entered Price, thus we know the relationship
print(AskUserVariable)
else:
#if there is also a cubic term in the ListForGLS, then there must not only be a quadratic, but also a cubic relationship
#i.e cubPrice and quadPrice could both be in ListForGLS, in which case we want it to run through the procedure for cubic not quadratic in Significance(AskUserVariable,AskUserValueOfX)
#Because cubPrice is in ListGLS, we know there is a quadratic and cubic term.
AskUserVariable=["Cub"+AskUserVariable]
#Artificially forcing it to use cubic instead of the quadratic
print(AskUserVariable)
elif AskUserVariable==X[3:]:
#All the other relationships start with 3 letters, i.e invPrice, logPrice, cubPrice, linPrice
AskUserVariable=[X]
#print(AskUserVariable)
#print(AskUserValueOfX)
#Now we are running the significance function to get a feel for how the partial effects are different with different units of inputs
Significance(AskUserVariable,CoefficientDictionary,AskUserTarget,UserInquiry=AskUserValueOfX)
#Significance(SignificantVariables,UserInquiry=1)
#-----------------------------------------------------
#Need to log out depend variable
#Need to deal with if they have categorical variables or binary variables
def Main():
print("Hello beloved user, today we are going to understand how to predict our future sales, and likewise what factors affect them and what can be done to manipulate these sales.")
print("Sounds cool, right? Now all I need is for you to tell me what variable you are looking to predict. I've taken the liberty to tell you what your choices are based on the file you uploaded. Please type the variable below.")
print(list(df_adv))
AskUserTarget=FindingDependent()
AskUserStartYear=GettingStartYear()
TimeVariablesList=TakingOutTime()
Misbehavior=DataMisbehavior()
FixingBehavior(Misbehavior)
AddingTrendVariable()
#Categorical()
ListBeforeVariables=ExplanatoryWithoutBinary(AskUserTarget,TimeVariablesList)
DummyVariables=Seasonality()
#print(DummyVariables)
#This is what the dataframe we will be analyzing looks like
#print (df_adv)
ListVariables=ExplanatoryWithBinary(AskUserTarget,TimeVariablesList)
#Naming target and explanatory variables X and y
X = df_adv[ListVariables]
y = df_adv[AskUserTarget]
#Adding a constant
#X = sm.add_constant(X)
BestFit=ModelFitter(ListBeforeVariables,y)
Dictionary=BestFit[0] #XShapeXVariable: AdjR^2 for ex. {LinPrice : .81,CubPrice : .12,....QuadAdvertisement : .21, LinAdvertisement : .91...}
ListRSquareLinear=BestFit[1] #List of adj r^2 for linear fit for each independent variable against the dependent for ex. [.12,.23,.66,.78.....]
ListRSquareLog=BestFit[2] #List of adj r^2 for log fit for each independent variable against the dependent for ex. [.12,.23,.66,.78.....]
ListRSquareQuad=BestFit[3] #List of adj r^2 for quadratic fit for each independent variable against the dependent for ex. [.12,.23,.66,.78.....]
ListRSquareCub=BestFit[4] #List of adj r^2 for cubic fit for each independent variable against the dependent for ex. [.12,.23,.66,.78.....]
ListRSquareInverse=BestFit[5] #List of adj r^2 for inverse (1/X) fit for each independent variable against the dependent for ex. [.12,.23,.66,.78.....]
ListOfVariablesThatContainZeros=BestFit[6] #All variables that had to be handled by the except in log because they have a zero somewhere
MaxRSquare=BestRSquare(ListRSquareLinear,ListRSquareLog,ListRSquareQuad,ListRSquareCub,ListRSquareInverse) #Returns a single list of the highest adj r^2 for each variable in the model
BestShapes=AssociatingShapeAndRSquare(MaxRSquare,Dictionary) #Best shapes looks like this ex. ['InvPrice', 'LinAdvetisement', 'CubRelated_Price', 'CubTime']
FormulaBuilder=SMFAssembler(BestShapes,ListBeforeVariables)
TotalFormula=FormulaBuilder[0]
ListForGLS=FormulaBuilder[1]
#print(ListForGLS)
print("Your regression equation looks like this")
TotalFormula=DummyBuilder(DummyVariables,TotalFormula)
print(TotalFormula)
#ListDummies=ListDum(ListVariables,ListBeforeVariables)
#print(ListDummies)
TermsToInteractWithTime=IsolatingMostBasicRelationship(ListForGLS,ListBeforeVariables)
TermsToInteract=[X for X in TermsToInteractWithTime if "Time" not in X]
#might have to come back to because cubtime/quadtime
ListOfBinaryInteractions=BinaryInteractions(TermsToInteract,DummyVariables)
ListOfInteractionTerms=GeneratingInteractions(TermsToInteract)
#-------------------------------------------------------------------------------------------------
#Confidence
AskUserConfidence=input("How confident do you want to be in my estimates? Enter 50, 80, 90, 92, 95, 98, 99: ")
LevelOfSignificance={'50':0.50,'80':0.20,'90':0.10,'92':0.08,'95':0.05,'98':0.02,'99':0.01}
LevelOfConfidence={'50':0.50,'80':0.80,'90':0.90,'92':0.92,'95':0.95,'98':0.98,'99':0.99}
#-------------------------------------------------------------------------------------------------
GLSAllVariables=ListForGLS+DummyVariables+ListOfInteractionTerms+ListOfBinaryInteractions
AllInteractionList=ListOfInteractionTerms+ListOfBinaryInteractions
ActualVariables=ListForGLS+DummyVariables
#This is your standard OLS with every possible interaction term and real variables
X=df_adv[GLSAllVariables]
X = sm.add_constant(X)
model = sm.OLS(y,X).fit()
#print(model.summary())
#-------------------------------------------------------------------------------------------------
#Cutting out insignificant interaction terms
Pvalues=model.pvalues
Parameters=model.params
CoefficientDictionary=dict(model.params)
PValueDictionary=dict(model.pvalues)
SignificantInteractionVariables=IsolatingSignificantVariables(AllInteractionList,AskUserConfidence,PValueDictionary,LevelOfSignificance)
#Interpetation of this is not nailed down, this is what would happen if it was:
#RealVariablesAndInteractions=ActualVariables+SignificantInteractionVariables
#X=df_adv[RealVariablesAndInteractions]
#X = sm.add_constant(X)
#model = sm.OLS(y,X).fit()
#might not need
#SignificantVariables=IsolatingSignificantVariables(RealVariablesAndInteractions,AskUserConfidence)
#TrueVariables=ListForGLS+ListDummies+SignificantInteractionVariables
#might not need
#SignificantVariables=IsolatingSignificantVariables(ActualVariables,AskUserConfidence,PValueDictionary,LevelOfSignificance)
#print("6666666")
#print(SignificantVariables)
TrueVariables=ListForGLS+DummyVariables
X=df_adv[TrueVariables]
X = sm.add_constant(X)
model = sm.OLS(y,X).fit()
#print(model.summary())
#----------------------------------------------------------------------------------------
#What it all means
Pvalues=model.pvalues
Parameters=model.params
CoefficientDictionary=dict(model.params)
PValueDictionary=dict(model.pvalues)
#----------------------------------------------------------------------------------------
#Multicolinearity
LogModel=Loggable(ListOfVariablesThatContainZeros)
# define probability
p = LevelOfConfidence[AskUserConfidence]
df=model.df_model
#Number of observations
n=len(df_adv)
#Getting residuals of model
Residuals=model.resid
#Doing a White's General Heteroscedasticity Test
model=WhitesTest(Residuals,n,p,df,y,GLSAllVariables,model,AllInteractionList,TrueVariables)
#----------------------------------------------------------------------------------------
#Autocorrelation
model=BreuschGodfreyTest(model,LevelOfSignificance,AskUserConfidence,y,TrueVariables,nlags=3,store=False)
#----------------------------------------------------------------------------------------
#Interpretation of finalized model
Pvalues=model.pvalues
Parameters=model.params
CoefficientDictionary=dict(model.params)
PValueDictionary=dict(model.pvalues)
print(model.summary())
SignificantVariables=IsolatingSignificantVariables(TrueVariables,AskUserConfidence,PValueDictionary,LevelOfSignificance)
print("*************")
print("These variables are statistically significant")
print(SignificantVariables)
ActualWordsWithDuplicates=Significance(SignificantVariables,CoefficientDictionary,AskUserTarget)
#taking out Duplicates
ActualWords = list(set(ActualWordsWithDuplicates))
BinarySignificance(SignificantVariables,AskUserTarget,CoefficientDictionary)
#Starting a loop for user to play with varyig the levels of inputs
AskUserVaryingInputs=input("Are you interested finding what your demand will increase by if you increase a variable by more than one unit? Y/N ")
while AskUserVaryingInputs=="Y":
VaryingInputs(AskUserVaryingInputs,ActualWords,ListForGLS,AskUserConfidence,CoefficientDictionary,AskUserTarget)
AskUserVaryingInputs=input("Are you interested finding what your demand will increase by if you increase a variable by more than one unit? Y/N ")
#Ask Dr.Bill about lambda
#Dan just emailed me literature on BoxCox, need to do this before can be sure to log dependent
#struggling to get max and min, should i used eigenvalues?
#
Main()
#######
#Holt-Winters
print('Now Lets Try Holt-Winters')
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from random import random
# Target Data
data = df_adv[AskUserTarget]
# fit model with different types of Winters
def FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend,seasonal,seasonal_periods,TestType):
np.seterr(all='ignore')
#they said this would fix RuntimeWarning: overflow encountered in multiply
#RuntimeWarning: overflow encountered in double_scalars
#I take this to mean we will lose some precision at the e308+ level which i'm okay with
model = ExponentialSmoothing(endog=data,trend=trend,seasonal=seasonal,seasonal_periods=seasonal_periods)
model_fit = model.fit()
#-------------------------------------------------------
# make prediction for entire set: ex. within-index = 0...127 post-index=128...159
yhats= model_fit.predict(0,DataIndexLength)
# compare post sample predictions and actual
PostSampleActual=data.iloc[LengthWithin:TotalLength]
PostSamplePredictions=yhats.iloc[LengthWithin:TotalLength]
#-------------------------------------------------------
#Finding Error
WINTERSRMSE=math.sqrt(mean_squared_error(PostSamplePredictions, PostSampleActual))
return(WINTERSRMSE,TestType)
DataIndexLength=len(data)-1
data = df_adv[AskUserTarget]
LengthWithin=len(train)
TotalLength=len(data)
seasonal_periods=SeasonDictionary[AskUserSeason]
#if AskUserTarget=ListOfVariablesThatContainZeros:
# pass
#This is because if it is yearly there is no seasonality
if AskUserSeason=='Yearly':
Result4=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="additive",seasonal="none",seasonal_periods=seasonal_periods,TestType="Winter's Additive Trend")
Result5=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="multiplicative",seasonal="none",seasonal_periods=seasonal_periods,TestType="Winter's Multiplicative Trend")
else:
Result1=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="additive",seasonal="additive",seasonal_periods=seasonal_periods,TestType="Winter's Additive Trend and Additive Seasonal")
Result2=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="additive",seasonal="multiplicative",seasonal_periods=seasonal_periods,TestType="Winter's Additive Trend and Multiplicative Seasonal")
#FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="multiplicative",seasonal="multiplicative",seasonal_periods=seasonal_periods)
#This one is like nahhhhh, got to look into it
Result3=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="multiplicative",seasonal="additive",seasonal_periods=seasonal_periods,TestType="Winter's Multiplicative Trend and Additive Seasonal")
#Using Nones
#FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="none",seasonal="add",seasonal_periods=seasonal_periods)
#FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="none",seasonal="multiplicative",seasonal_periods=seasonal_periods)
#I think these can't happen
Result4=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="additive",seasonal="none",seasonal_periods=seasonal_periods,TestType="Winter's Additive Trend")
Result5=FittingWinters(TotalLength,LengthWithin,DataIndexLength,data,trend="multiplicative",seasonal="none",seasonal_periods=seasonal_periods,TestType="Winter's Multiplicative Trend")
try:
BESTWINTERSRMSE=min(Result1[0],Result2[0],Result3[0],Result4[0],Result5[0])
except:
BESTWINTERSRMSE=min(Result4[0],Result5[0])
#need to figure out how to resturn best name type
print(BESTWINTERSRMSE)