-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackup
366 lines (350 loc) · 15.6 KB
/
backup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
Jupyter Notebook
Final Hearts
Last Checkpoint: 08/19/2021
(autosaved)
Current Kernel Logo
Python 3
File
Edit
View
Insert
Cell
Kernel
Widgets
Help
Code
# To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals
# Common imports
import numpy as np
import os
import pandas as pd
from scipy.stats import randint
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import FunctionTransformer
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.ensemble import RandomForestClassifier
# to make this notebook's output stable across runs
np.random.seed(42)
# To plot pretty figures
%matplotlib inline
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# Where to save the figures
PROJECT_ROOT_DIR = "/Users/katelassiter/Downloads/ML/HeartPredict"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
os.makedirs(IMAGES_PATH, exist_ok=True)
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
np.random.seed(42)
data=pd.read_csv("/Users/katelassiter/Downloads/heart_failure_clinical_records_dataset.csv")
%matplotlib inline
data.hist(bins=50, figsize=(20,15))
save_fig("attribute_histogram_plots")
plt.show()
Saving figure attribute_histogram_plots
#shuffle because some algorithms need it
data=shuffle(data)
#need to find out important independent varibales so can decide if need stratified sampling
#class imalance using stratefied sampling
split = StratifiedShuffleSplit(n_splits=1, test_size=0.3, random_state=42)
for train_index, test_index in split.split(data, data["DEATH_EVENT"]):
strat_train_set = data.loc[train_index]
strat_test_set = data.loc[test_index] #class imbalance we will want to use stratiffied sampling
strat_test_set=strat_test_set.reset_index()
strat_train_set.DEATH_EVENT.value_counts()
len(strat_test_set)
90
num_pipeline = Pipeline([
#('imputer', SimpleImputer(strategy="median")),
#('attribs_adder', FunctionTransformer(add_extra_features, validate=False)),
('std_scaler', StandardScaler()),
])
full_pipeline = ColumnTransformer([
("num", num_pipeline, strat_train_set.drop("DEATH_EVENT", axis=1).columns)
])
heart_prepared = full_pipeline.fit_transform(strat_train_set)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds,main_title):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.xlabel("Threshold", fontsize=16)
plt.legend(loc="upper left", fontsize=16)
plt.ylim([0, 1])
plt.title(main_title)
def plot_precision_vs_recall(precisions, recalls,main_title):
plt.plot(recalls, precisions, "b-", linewidth=2)
plt.xlabel("Recall", fontsize=16)
plt.ylabel("Precision", fontsize=16)
plt.axis([0, 1, 0, 1])
plt.title(main_title)
def plot_roc_curve(fpr, tpr, label=None,main_title=""):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--')
plt.axis([0, 1, 0, 1])
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.title(main_title)
def plot_roc_curve(fpr, tpr, label=None,main_title=""):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--')
plt.axis([0, 1, 0, 1])
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.title(main_title)
####YOU would LIKE TO OPTIMIZE THIS IN THE FUTURE
#models=["lin_reg","svm_reg"]
#for model in models:
# print(model)
# foo="self."+model
# print(foo)
# exec(foo + " = 'something else'")
#self.lin_reg=self.lin_reg.fit(X,y)
#>>> foo = "bar"
#X>>> exec(foo + " = 'something else'")
def confidence_interval(model,confidence,X,y):
squared_errors = (model.predict(X) - y) ** 2
mean = squared_errors.mean()
m = len(squared_errors)
CI=np.sqrt(stats.t.interval(confidence, m - 1,
loc=np.mean(squared_errors),
scale=stats.sem(squared_errors)))
return(CI)
class ModelFinder(BaseEstimator, TransformerMixin):
def __init__(self, cv=5, n_estimators=100,prob_type="Regression"): # no *args or **kwargs
self.cv=cv
self.n_estimators=n_estimators
self.RSMEs=[]
self.lin_reg=LinearRegression()
self.lin_reg.t_interval=False
self.svm_reg = SVR(kernel="linear")
self.svm_reg.t_interval=False
self.tree_reg=DecisionTreeRegressor(random_state=42)
self.tree_reg.t_interval=False
self.forest_reg = RandomForestRegressor(n_estimators=self.n_estimators, random_state=42)
self.max_iter=5
self.sgd_class=SGDClassifier(max_iter=self.max_iter, tol=-np.infty, random_state=42)
self.prob_type=prob_type
self.accuracies=[]
self.sgd_class.accuracies=[]
self.sgd_class.confusion_matrix=False
self.sgd_class.precision=False
self.sgd_class.recall=False
self.sgd_class.f1=False
self.sgd_class.show=False
self.sgd_class.show_plot=False
self.sgd_class.y_scores=False
self.sgd_class.roc_score=False
def pick_model(self, X, y):
if self.prob_type == "Regression":
################################################
#linear regression
#models=[lin_reg,svm_reg]
#for model in models:
# foo="self."+model
# exec(foo + " = ")
# self.lin_reg=self.lin_reg.fit(X,y)
param_grid = [{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},]
param_distribs = {
'n_estimators': randint(low=1, high=200),
'max_features': randint(low=1, high=8),}
self.lin_reg=self.lin_reg.fit(X,y)
lin_scores = cross_val_score(self.lin_reg, X, y,scoring="neg_mean_squared_error", cv=self.cv)
lin_rmse_scores = np.sqrt(-lin_scores)
self.RSMEs=self.RSMEs+[lin_rmse_scores.mean()]
self.lin_reg.t_interval=confidence_interval(self.lin_reg,0.95,X,y)
#return(display_scores(lin_rmse_scores))
################################################
#SVM
self.svm_reg=self.svm_reg.fit(X,y)
svm_scores = cross_val_score(self.svm_reg, X,y, scoring="neg_mean_squared_error", cv=self.cv)
svm_rmse_scores = np.sqrt(-svm_scores)
self.RSMEs=self.RSMEs+[svm_rmse_scores.mean()]
self.svm_reg.t_interval=confidence_interval(self.svm_reg,0.95,X,y)
################################################
#decision treee
self.tree_reg=self.tree_reg.fit(X,y)
scores = cross_val_score(self.tree_reg, X,y,
scoring="neg_mean_squared_error", cv=self.cv)
tree_rmse_scores = np.sqrt(-scores)
self.RSMEs=self.RSMEs+[tree_rmse_scores.mean()]
self.tree_reg.t_interval=confidence_interval(self.tree_reg,0.95,X,y)
################################################
#forest
self.forest_reg=self.forest_reg.fit(X,y)
grid_search = GridSearchCV(self.forest_reg, param_grid, cv=self.cv,
scoring='neg_mean_squared_error', return_train_score=True)
grid_search.fit(X,y)
cvres = grid_search.cv_results_
grid_rsme=min(np.sqrt(-cvres["mean_test_score"]))
rnd_search = RandomizedSearchCV(self.forest_reg, param_distributions=param_distribs,
n_iter=10, cv=self.cv, scoring='neg_mean_squared_error', random_state=42)
rnd_search.fit(X,y)
cvres = rnd_search.cv_results_
rnd_rsme=min(np.sqrt(-cvres["mean_test_score"]))
#pick best; random or grid
self.RSMEs=self.RSMEs+[min(grid_rsme,rnd_rsme)]
self.forest_reg=[grid_search,rnd_search][np.argmin([grid_rsme,rnd_rsme])]
##############################################
#pick models
models=["Linear Regression",'SVM',"Decision Tree","Random Forest"]
zipped_lists = zip(self.RSMEs, models)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
self.RSMEs, models = [ list(tuple) for tuple in tuples]
Result={}
for x,y in zip(self.RSMEs,models): Result[y]=x #picks best 4 models
ResultTop={}
for x,y in zip(self.RSMEs[0:3],models[0:3]): ResultTop[y]=x #picks best 4 models
self.RSMEs=Result
return(ResultTop)
else:
#sGD
self.sgd_class=self.sgd_class.fit(X,y)
self.sgd_class.accuracies=cross_val_score(self.sgd_class, X, y, cv=self.cv, scoring="accuracy")
y_train_pred = cross_val_predict(self.sgd_class, X, y, cv=self.cv)
self.sgd_class.confusion_matrix=confusion_matrix(y, y_train_pred)
self.sgd_class.precision=precision_score(y, y_train_pred)
self.sgd_class.recall=recall_score(y, y_train_pred)
self.sgd_class.f1=f1_score(y, y_train_pred)
self.sgd_class.y_scores = cross_val_predict(self.sgd_class, X, y, cv=self.cv,
method="decision_function")
precisions, recalls, thresholds = precision_recall_curve(y, self.sgd_class.y_scores)
#Decision threshold
plt.figure(figsize=(8, 4))
plot_precision_recall_vs_threshold(precisions, recalls, thresholds,"SGD")
plt.xlim([-300, 300])
save_fig("precision_recall_vs_threshold_plot_sgd")
plt.show()
#recall vs precision
plt.figure(figsize=(8, 6))
plot_precision_vs_recall(precisions, recalls,"SGD")
save_fig("precision_vs_recall_plot_sgd")
plt.show()
#roc
fpr, tpr, thresholds = roc_curve(y, self.sgd_class.y_scores)
plt.figure(figsize=(8, 6))
plot_roc_curve(fpr, tpr,'SGD')
save_fig("roc_curve_plot_sgd")
plt.show()
self.sgd_class.roc_score=roc_auc_score(y, self.sgd_class.y_scores)
#randome forest
self.forest_class = RandomForestClassifier(n_estimators=self.n_estimators, random_state=42)
self.forest_class.y_probas = cross_val_predict(self.forest_class, X, y, cv=self.cv,
method="predict_proba")
self.forest_class.y_scores = self.forest_class.y_probas[:, 1] # score = proba of positive class
fpr_forest, tpr_forest, thresholds_forest = roc_curve(y,self.forest_class.y_scores)
#rOC
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, "b:", linewidth=2, label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "Random Forest")
plt.legend(loc="lower right", fontsize=16)
save_fig("roc_curve_comparison_plot")
plt.show()
model_selection = ModelFinder(cv=5,prob_type="Classification")
model_selection.pick_model(heart_prepared,strat_train_set["DEATH_EVENT"])
Saving figure precision_recall_vs_threshold_plot_sgd
Saving figure precision_vs_recall_plot_sgd
Saving figure roc_curve_plot_sgd
Saving figure roc_curve_comparison_plot
len(strat_train_set[strat_train_set["DEATH_EVENT"]==1])/len(strat_train_set)
#Because only 30% of observations = 1, says 70% accrate cause alway just guesses no
#in this case, recall is more impotant than precion, don't matter if we identify few false positive as long as getting 99% of the death event
#you should prefer the PR curve whenever the positive class is rare or when you care more about the false positives than the false negatives, and the ROC curve otherwise.
#So we will care about the Roc
0.3444976076555024
def ThresholdSGD(y_scores,threshold,y):
y_train_pred = (y_scores > threshold)
print("Precision:",precision_score(y, y_train_pred))
print("Recall:",recall_score(y, y_train_pred))
print("f1:",f1_score(y, y_train_pred))
ThresholdSGD(model_selection.sgd_class.y_scores,-40,strat_train_set["DEATH_EVENT"])
Precision: 0.5565217391304348
Recall: 0.8888888888888888
f1: 0.6844919786096257
model_selection.sgd_class.roc_score
0.8287712895377128
confusion_matrix(strat_train_set["DEATH_EVENT"],model_selection.sgd_class.y_scores)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-14-5132207a85d3> in <module>
----> 1 confusion_matrix(strat_train_set["DEATH_EVENT"],model_selection.sgd_class.y_scores)
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in confusion_matrix(y_true, y_pred, labels, sample_weight)
251
252 """
--> 253 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
254 if y_type not in ("binary", "multiclass"):
255 raise ValueError("%s is not supported" % y_type)
~/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py in _check_targets(y_true, y_pred)
79 if len(y_type) > 1:
80 raise ValueError("Classification metrics can't handle a mix of {0} "
---> 81 "and {1} targets".format(type_true, type_pred))
82
83 # We can't have more than one value on y_type => The set is no more needed
ValueError: Classification metrics can't handle a mix of binary and continuous targets
model_selection.sgd_class.confusion_matrix
array([[112, 25],
[ 28, 44]])
plt.matshow(model_selection.sgd_class.confusion_matrix, cmap=plt.cm.gray)
save_fig("confusion_matrix_plot", tight_layout=False)
plt.show()
Saving figure confusion_matrix_plot
row_sums = model_selection.sgd_class.confusion_matrix.sum(axis=1, keepdims=True)
norm_conf_mx = model_selection.sgd_class.confusion_matrix / row_sums
row_sums
norm_conf_mx
array([[0.81751825, 0.18248175],
[0.38888889, 0.61111111]])
#Now let’s fill the diagonal with zeros to keep only the errors
np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
save_fig("confusion_matrix_errors_plot", tight_layout=False)
plt.show()
Saving figure confusion_matrix_errors_plot
#np.c_
## both are 2 dimensional array
#a = array([[1, 2, 3], [4, 5, 6]])
#b = array([[7, 8, 9], [10, 11, 12]])
#1st item: [1,2,3] + [7,8,9] = [1,2,3,7,8,9]
#2nd item: [4,5,6] + [10,11,12] = [4,5,6,10,11,12]