-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
executable file
·139 lines (112 loc) · 4.13 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python3
import numpy as np
import os
import logging
import json
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import load_dataset, dataset_dict, Dataset
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
from model import add_special_tokens
logger = logging.getLogger(__name__)
"""
Classes for loading data from raw JSONs into PyTorch Lightning DataModule
"""
class DataModule(pl.LightningDataModule):
"""
Common PL DataModule methods
"""
def __init__(self, args, special_tokens, model_name=None):
super().__init__()
self.args = args
self.model_name = model_name or self.args.model_name
# disable the "huggingface/tokenizers: The current process just got forked" warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name,
use_fast=True)
self.special_tokens = special_tokens
if special_tokens:
add_special_tokens(self.tokenizer, None, tokens=special_tokens)
def setup(self, stage):
data_dir = self.args.in_dir
if stage == "fit":
splits = ["train", "dev"]
elif stage == "predict":
splits = [self.args.split]
raw_dataset = {
split : load_dataset("json",
data_files=os.path.join(data_dir, f"{split}.json"),
field="data",
split="train") for split in splits
}
self.dataset = self._process_raw_dataset(raw_dataset)
def _process_raw_dataset(self, raw_dataset):
dataset = {}
for split in raw_dataset.keys():
columns = ["attention_mask", "input_ids"]
columns_to_remove = ["in"]
if "out" in raw_dataset[split].features.keys():
columns_to_remove.append("out")
columns.append("labels")
dataset[split] = raw_dataset[split].map(
self._convert_to_features,
remove_columns=columns_to_remove,
batched=True
)
dataset[split].set_format(
type="torch",
columns=columns
)
return dataset
def train_dataloader(self):
return DataLoader(
self.dataset['train'],
batch_size=self.args.batch_size,
num_workers=self.args.max_threads,
collate_fn=self._pad_sequence,
shuffle=True
)
def val_dataloader(self):
return DataLoader(self.dataset['dev'],
batch_size=self.args.batch_size,
num_workers=self.args.max_threads,
collate_fn=self._pad_sequence
)
def test_dataloader(self):
return DataLoader(self.dataset['test'],
batch_size=self.args.batch_size,
num_workers=self.args.max_threads,
collate_fn=self._pad_sequence
)
def _pad_sequence(self, batch):
"""
Add paddings to align sequence endings in a batch.
"""
batch_collated = {}
paddings = {
# 0 is used as a dummy padding if pad_token_id is not available
"input_ids" : self.tokenizer.pad_token_id or 0,
"attention_mask" : 0,
# -100 is a default `ignore_index` for torch.nn.NLLLoss
"labels" : -100
}
for key in batch[0].keys():
elems = [x[key] for x in batch]
elems_pad = pad_sequence(elems, batch_first=True, padding_value=paddings[key])
batch_collated[key] = elems_pad
return batch_collated
def _convert_to_features(self, example_batch, indices=None):
features = self.tokenizer(
example_batch["in"],
max_length=self.args.max_length,
truncation=True
)
if "out" in example_batch.keys():
features["labels"] = self.tokenizer(
example_batch["out"]
)["input_ids"]
return features