-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
executable file
·392 lines (298 loc) · 12.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python3
import json
import csv
import os
import logging
import re
import random
import datasets
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from collections import defaultdict, namedtuple
from utils.tokenizer import Tokenizer
from datasets import load_dataset
logger = logging.getLogger(__name__)
RDFTriple = namedtuple('RDFTriple', ['head', 'rel', 'tail'])
RDFTripleDesc = namedtuple('RDFTripleDesc', ['head', 'head_desc', 'rel', 'rel_desc', 'tail', 'tail_desc'])
def get_dataset_class_by_name(name):
"""
A helper function which allows to use the class attribute `name` of a Dataset
(sub)class as a command-line parameter for loading the dataset.
"""
try:
# case-insensitive
available_classes = {o.name.lower() : o for o in globals().values()
if type(o)==type(Dataset) and hasattr(o, "name")}
return available_classes[name.lower()]
except AttributeError:
logger.error(f"Unknown dataset: '{args.dataset}'. Please create \
a class with an attribute name='{args.dataset}' in 'data.py'.")
return None
class DataEntry:
def __init__(self, data, lexs, data_type="triples"):
self.data = data
self.lexs = lexs
self.data_type = data_type
def __repr__(self):
return str(self.__dict__)
class Dataset:
"""
Base class for the datasets
"""
def __init__(self):
self.data = {split: [] for split in ["train", "dev", "test"]}
def load(self, splits, path=None):
"""
Load the dataset. Path can be specified for loading from a directory
or omitted if the dataset is loaded from HF.
"""
raise NotImplementedError
class Rel2Text(Dataset):
name="rel2text"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokenizer = Tokenizer()
self.rels_filter = self.load_rels_filter()
self.rels_accept = set()
self.rels_emb = {}
self.semsim_model = SentenceTransformer('all-distilroberta-v1')
self.semsim_threshold = 0.9
self.few_shot = False
self.random_seed = None
self.ids = defaultdict(list)
def load_rels_filter(self):
rels_filter = []
with open("utils/relation_list/webnlg_v3_all.txt") as f:
rels_filter += [x.strip() for x in f.readlines()]
with open("utils/relation_list/kelm_all.txt") as f:
rels_filter += [x.strip() for x in f.readlines()]
rels_filter.sort()
return rels_filter
def precompute_semsim(self, rel_labels, rels_filter):
embeddings1 = self.semsim_model.encode(rel_labels, convert_to_tensor=True, show_progress_bar=True)
embeddings2 = self.semsim_model.encode(rels_filter, convert_to_tensor=True, show_progress_bar=True)
scores = util.cos_sim(embeddings1, embeddings2)
return scores
def get_semsim(self, rel1, rel2, semsim_matrix):
idx1 = self.rel_labels_idx[rel1]
idx2 = self.rels_filter.index(rel2)
return semsim_matrix[idx1][idx2].item()
def has_no_similarities(self, rel, semsim_matrix):
if rel in self.rels_accept:
print("[OK]", rel)
return True
elif rel in self.rels_filter:
print("[Reject-exact-match]", rel)
return False
else:
highest_score = -1
best_match = None
for rel2 in self.rels_filter:
score = self.get_semsim(rel, rel2, semsim_matrix)
if score > highest_score:
highest_score = score
best_match = rel2
if score >= self.semsim_threshold:
print("[Reject-semsim]", rel)
return False
print(f"[Best-semsim] {highest_score:.3f} | {rel} -> {best_match}")
self.rels_accept.add(rel)
return True
def create_entry(self, example):
head = example["head"]
head_desc = example["head_desc"]
rel = example["relation"]
rel_desc = example["rel_desc"]
tail = example["tail"]
tail_desc = example["tail_desc"]
triples = [RDFTripleDesc(head, head_desc, rel, rel_desc, tail, tail_desc)]
lexs = [example["response"]]
entry = DataEntry(data=triples, lexs=lexs)
return entry
def assert_no_test_bias(self):
test_rel_labels =list(set([x.data[0].rel for x in self.data["test"]]))
train_rel_labels =list(set([x.data[0].rel for x in self.data["train"] + self.data["dev"]]))
posthoc_semsim_matrix = self.precompute_semsim(
rel_labels=test_rel_labels,
rels_filter=train_rel_labels
)
for idx1, rel_test in enumerate(test_rel_labels):
highest_score = -1
best_match = None
for idx2, rel_train in enumerate(train_rel_labels):
score = posthoc_semsim_matrix[idx1][idx2].item()
if score > highest_score:
highest_score = score
best_match = rel_train
if highest_score >= self.semsim_threshold:
raise ValueError(f"[Best-semsim] {highest_score:.3f} | {rel_test} -> {best_match}")
def set_fewshot_split(self, fewshot_split):
self.data["train"] = self.limited_train_data[:fewshot_split]
def load(self, path, splits):
rel_num = 0
rel_prev = None
id_prev = -1
examples_clean = []
examples_biased = []
data = pd.read_csv(os.path.join(path, "rel2text_raw_annotated.tsv"), sep='\t')
rel_labels = list(set(data["relation"].to_list()))
self.rel_labels_idx = dict([(y,x) for x,y in enumerate(rel_labels)])
semsim_matrix = self.precompute_semsim(
rel_labels=rel_labels,
rels_filter=list(self.rels_filter)
)
logger.info("Similarities precomputed")
for i, example in data.iterrows():
if example["state"] != "ok":
continue
# keep only one (successful) human reference for each example
if example["id"] != id_prev:
id_prev = example["id"]
else:
continue
rel = example["relation"]
if rel != rel_prev:
rel_prev = rel
rel_num += 1
if self.has_no_similarities(example["relation"], semsim_matrix):
examples_clean.append(example)
else:
examples_biased.append(example)
examples_total = len(examples_clean) + len(examples_biased)
examples_test_max = int(0.15 * examples_total)
rel_prev = None
for i, example in enumerate(examples_clean):
entry = self.create_entry(example)
if example["relation"] != rel_prev:
rel_prev = example["relation"]
if len(self.data["test"]) > examples_test_max:
break
self.data["test"].append(entry)
self.ids["test"].append(example["id"])
rel_prev = None
split = None
for j, example in enumerate(examples_clean[i:] + examples_biased):
entry = self.create_entry(example)
if example["relation"] != rel_prev:
rel_prev = example["relation"]
if j % 10 == 0:
split = "dev"
else:
split = "train"
self.data[split].append(entry)
self.ids[split].append(example["id"])
self.assert_no_test_bias()
logger.info([(split, len(self.data[split])) for split in ["train", "dev", "test"]])
if self.few_shot:
rels_used = set()
self.limited_train_data = []
random.seed(self.random_seed)
random.shuffle(self.data["train"])
for example in self.data["train"]:
rel = example.data[0].rel
if rel in rels_used:
continue
else:
rels_used.add(rel)
self.limited_train_data.append(example)
if len(self.limited_train_data) == self.max_fewshot_len:
break
class WebNLG_v3(Dataset):
name="webnlg_v3"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokenizer = Tokenizer()
def load(self, path, splits):
# GEM-based loading
dataset = load_dataset("gem", "web_nlg_en")
for split in splits:
data = dataset[split if split != "dev" else "validation"]
for example in data:
triples = example["input"]
triples = [t.split("|") for t in triples]
triples = [[self.tokenizer.normalize(text, remove_quotes=True, remove_parentheses=True)
for text in t]
for t in triples]
triples = [RDFTriple(*t) for t in triples]
if split == "test":
lexs = example["references"]
else:
lexs = [example["target"]]
entry = DataEntry(data=triples, lexs=lexs)
self.data[split].append(entry)
class KeLM(Dataset):
name="kelm"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokenizer = Tokenizer()
def normalize(self, text):
text = re.sub(r"\+(\d*)", r"\1", text)
# text = self.tokenizer.detokenize(text)
# detokenization is too slow, this is a simpler workaround
text = text.strip()
text = text.replace("( ", "(")
text = text.replace(" )", ")")
text = text.replace(" ,", ",")
text = text.replace(" 's", "'s")
text = text.replace(" : ", ":")
text = text.replace("--", "-")
text = re.sub(r"(\s)\s+", r"\1", text)
return text
def load(self, path, splits):
entries = 0
skipped = 0
damaged = 0
rel_idx = 0
nr_triples = defaultdict(int)
train_rels = set()
dev_rels = set()
with open(os.path.join(path, "kelm_generated_corpus.jsonl")) as f:
for line in f.readlines():
try:
j = json.loads(line)
entries += 1
# !!!! DEBUG !!!!
# if entries > 10000:
# break
nr_triples[len(j["triples"])]+=1
lexs = [self.normalize(j["gen_sentence"])]
# skip damaged examples
if "⁇" in lexs[0]:
damaged += 1
continue
triples = []
skip = False
for t in j["triples"]:
rel_label = t[1]
# skip examples which are not a proper RDF triple or contain a mislabeled relation
if len(t) != 3 or not rel_label[0].islower():
skip = True
break
if rel_label in train_rels:
split = "train"
elif rel_label in dev_rels:
split = "dev"
else:
rel_idx += 1
if rel_idx % 100 == 0:
dev_rels.add(rel_label)
split = "dev"
else:
train_rels.add(rel_label)
split = "train"
t_norm = [self.normalize(t[0]), self.normalize(t[1]), self.normalize(t[2])]
triple = RDFTriple(*t_norm)
triples.append(triple)
if skip == True:
continue
entry = DataEntry(data=triples, lexs=lexs)
self.data[split].append(entry)
if entries % 10000 == 0:
logger.info(entry)
logger.info(f"{entries - skipped - damaged}/{entries} loaded ({skipped} skipped, {damaged} damaged)")
logger.info(f"# of triples: " + str(nr_triples))
except KeyError:
skipped += 1
pass
except Exception as e:
raise