Ytk-learn provides online prediction java class for each model. All models provide score-calculating and predicting interfaces, which are thread-safe.
model | class | interface |
---|---|---|
linear | com.fenbi.ytklearn.predictor.LinearOnlinePredictor | loss/score/predict/thompsonSamplingPredict |
multiclass_linear | com.fenbi.ytklearn.predictor.MulticlassLinearOnlinePredictor | loss/scores/predicts |
fm | com.fenbi.ytklearn.predictor.FMOnlinePredictor | loss/score/predict |
ffm | com.fenbi.ytklearn.predictor.FFMOnlinePredictor | loss/score/predict |
gbdt | com.fenbi.ytklearn.predictor.GBDTOnlinePredictor | loss/score/predict/scores/predicts/predictLeaf |
gbmlr | com.fenbi.ytklearn.predictor.GBMLROnlinePredictor | loss/score/predict/predictLeaf |
gbsdt | com.fenbi.ytklearn.predictor.GBSDTOnlinePredictor | loss/score/predict/predictLeaf |
gbhmlr | com.fenbi.ytklearn.predictor.GBHMLROnlinePredictor | loss/score/predict/predictLeaf |
gbhsdt | com.fenbi.ytklearn.predictor.GBHSDTOnlinePredictor | loss/score/predict/predictLeaf |
protected abstract OnlinePredictor loadModel() throws Exception;
/**
* Calculates score, used for single label model
* @param features features map, key:featureName, value:featureValue
* @param other if the model is a tree-based model, it uses sample dependent score(Float type)
* if not, this parameter will be omitted(set null).
* @return score score value before entering active function
*/
public abstract double score(Map<String, Float> features, Object other);
/**
* Calculates scores, used for multi-label model, e.g. multiclass_linear model
* @param features features map, key:featureName, value:featureValue
* @param other if the model is a tree=based model, it uses sample dependent score(Float[] * type)
* if not, this parameter will be omitted(set null)
* @return
*/
public double[] scores(Map<String, Float> features, Object other);
/**
* Predicts using active function, used for single-label model
* @param features features map, key:featureName, value:featureValue
* @param other see {@link #score(Map, Object)}
* @return prediction. e.g.:
* if your model is a linear model, and loss_function is "sigmoid"(Logistic Regression), then prediction is probability.
* if your model is a linear model, and loss_function is "L2"(Linear Regression, Identity active function), then prediction is equal to score
*/
public abstract double predict(Map<String, Float> features, Object other);
/**
* Predicts using active function, used for multi-label model
* @param features features map, key:featureName, value:featureValue
* @param other see {@link #scores(Map, Object)}
* @return predictions
*/
public double[] predicts(Map<String, Float> features, Object other);
/**
* Calculates loss, used for single-label model
* @param features features map, key:featureName, value:featureValue
* @param label label
* @param other see {@link #score(Map, Object)}
* @return loss
*/
public abstract double loss(Map<String, Float> features, double label, Object other);
/**
* Calculates loss, used for multi-label model
* @param features features map, key:featureName, value:featureValue
* @param labels labels
* @param other see {@link #scores(Map, Object)}
* @return
*/
public double loss(Map<String, Float> features, double[] labels, Object other);
/**
* Thompson sampling prediction for E&E(Exploitation and Exploration).
* Using Laplace approximation, distribution of parameters posterior will be approximate to diagonal gaussian distribution,
* Details see "An Empirical Evaluation of Thompson Sampling"
* @param features features map, key:featureName, value:featureValue
* @param alpha multiplied by standard deviation, it controls the exploitation and the exploration; the larger alpha value, the more exploration, the less exploitation.
* @return prediction
*/
public double thompsonSamplingPredict(Map<String, Float> features, double alpha);
/**
* If the model is GBDT, leaf indexes are returned, length = tree number
* else if the model is GBST, gating values(soft leaf indexes) are returned, length = tree number * mixture number
* @param features
* @return leaf indexes or gating values, these values are usually used as features for other models.
*/
double[] predictLeaf(Map<String, Float> features);
How to create online predictor?
OnlinePredictorFactory
static class provides two static functions to create online predictor, the content and format of configuration file is the same as training.
public static OnlinePredictor createOnlinePredictor(String modelName, String configPath) throws Exception;
public static OnlinePredictor createOnlinePredictor(String modelName, Reader configReader) throws Exception;
<dependency>
<groupId>com.fenbi</groupId>
<artifactId>ytk-learn</artifactId>
<version>0.0.3</version>
</dependency>