-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
58 lines (48 loc) · 2 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Dice_loss:
def __call__(self, inputs, targets):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
assert -1 not in denominator
loss = 1 - (numerator + 1) / (denominator + 1)
assert not torch.any(torch.isnan(loss))
return loss.sum()
class Loss:
def __init__(self, args):
self.args = args
self.l1_loss = nn.SmoothL1Loss()
self.bce_loss = nn.BCELoss()
self.dice_loss = Dice_loss()
def __call__(self, inputs, targets):
# import pdb; pdb.set_trace()
loss = 0
if "dice" in self.args.loss:
loss += self.dice_loss(inputs, targets)
if "l1" in self.args.loss:
loss += self.l1_loss(inputs, targets).sum(dim=1).mean()
if "bce" in self.args.loss:
# c_indx = gt_uncty == 1
# loss_unc = self.bce_loss(uncty, gt_uncty.float())
# loss_c = self.bce_loss(inputs[c_indx], targets[c_indx])
# loss += (1 - self.args.unc_prob)*loss_c + (self.args.unc_prob)*loss_unc
loss += self.bce_loss(inputs, targets)
# inputs = torch.clamp(inputs, 1e-7, 1 - 1e-7)
# loss += (-0.7*targets*torch.log(inputs) -0.3*(1 - targets)*torch.log(1 - inputs)).mean()
if loss == 0:
raise Exception(f"{self.args.loss} loss not implemented!")
return loss