-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximum-deletions-on-a-string.py
81 lines (73 loc) · 2.59 KB
/
maximum-deletions-on-a-string.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Time: O(n^2)
# Space: O(n)
# dp
class Solution(object):
def deleteString(self, s):
"""
:type s: str
:rtype: int
"""
if all(x == s[0] for x in s):
return len(s)
dp2 = [[0]*(len(s)+1) for i in xrange(2)] # dp2[i%2][j]: max prefix length of s[i:] and s[j:]
dp = [1]*len(s) # dp[i]: max operation count of s[i:]
for i in reversed(xrange(len(s)-1)):
for j in xrange(i+1, len(s)):
dp2[i%2][j] = dp2[(i+1)%2][j+1]+1 if s[j] == s[i] else 0
if dp2[i%2][j] >= j-i:
dp[i] = max(dp[i], dp[j]+1)
return dp[0]
# Time: O(n^2)
# Space: O(n)
# dp, kmp algorithm
class Solution2(object):
def deleteString(self, s):
"""
:type s: str
:rtype: int
"""
def getPrefix(pattern, start):
prefix = [-1]*(len(pattern)-start)
j = -1
for i in xrange(1, len(pattern)-start):
while j != -1 and pattern[start+j+1] != pattern[start+i]:
j = prefix[j]
if pattern[start+j+1] == pattern[start+i]:
j += 1
prefix[i] = j
return prefix
if all(x == s[0] for x in s):
return len(s)
dp = [1]*len(s) # dp[i]: max operation count of s[i:]
for i in reversed(xrange(len(s)-1)):
prefix = getPrefix(s, i) # prefix[j]+1: longest prefix suffix length of s[i:j+1]
for j in xrange(1, len(prefix), 2):
if 2*(prefix[j]+1) == j+1:
dp[i] = max(dp[i], dp[i+(prefix[j]+1)]+1)
return dp[0]
# Time: O(n^2)
# Space: O(n)
# dp, rolling hash
class Solution3(object):
def deleteString(self, s):
"""
:type s: str
:rtype: int
"""
MOD, P = 10**9+7, (113, 109)
def hash(i, j):
return [(prefix[idx][j+1]-prefix[idx][i]*power[idx][j-i+1])%MOD for idx in xrange(len(P))]
if all(x == s[0] for x in s):
return len(s)
power = [[1] for _ in xrange(len(P))]
prefix = [[0] for _ in xrange(len(P))]
for x in s:
for idx, p in enumerate(P):
power[idx].append((power[idx][-1]*p)%MOD)
prefix[idx].append((prefix[idx][-1]*p+(ord(x)-ord('a')))%MOD)
dp = [1]*len(s) # dp[i]: max operation count of s[i:]
for i in reversed(xrange(len(s)-1)):
for j in xrange(1, (len(s)-i)//2+1):
if hash(i, i+j-1) == hash(i+j, i+2*j-1):
dp[i] = max(dp[i], dp[i+j]+1)
return dp[0]