-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtester.py
59 lines (45 loc) · 1.55 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import os
import numpy as np
import faceRecognition as fr
test_img = cv2.imread('Input\\3.jpg')
faces_detected, gray_img = fr.faceDetection(test_img)
if len(faces_detected) ==0:
print("No face Detected")
else:
print("FaceDetected")
for(x,y,w,h) in faces_detected:
cv2.rectangle(test_img, (x,y), (x+w, y+h), (255,0,0), thickness = 10)
#
# resized_img = cv2.resize(test_img, (750,700))
# cv2.imshow("face-Detected",resized_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows
# faces,faceId = fr.labels_for_training_data("test-img")
# face_recognizer = fr.train_classifier(faces,faceId)
# face_recognizer.save('trainingData.xml')
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.read('trainingData.xml')
name={ 1:"Santhosh",2:'Sasi',3:'Dharun',4:"Dharun"}
for face in faces_detected:
x,y,w,h = face
roi_gray = gray_img[y:y+h,x:x+h]
label,confidence = face_recognizer.predict(roi_gray)
print("Confidence {} \n Label: {}".format(confidence,label))
fr.draw_rect(test_img,face)
predicted_name = name[label]
if confidence > 37:
continue
fr.put_text(test_img,predicted_name,x,y)
resized_img = cv2.resize(test_img, (500,500))
cv2.imshow("face-Detected",resized_img)
cv2.waitKey(0)
cv2.destroyAllWindows
#
# for(x,y,w,h) in faces_detected:
# cv2.rectangle(test_img, (x,y), (x+w, y+h), (255,0,0), thickness = 10)
#
# resized_img = cv2.resize(test_img, (750,700))
# cv2.imshow("face-Detected",resized_img)
# cv2.waitKey(0)
# cv2.destroyAllWindows