-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathload_data.py
35 lines (30 loc) · 1.27 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gzip, cPickle
import theano
import theano.tensor as T
import numpy as np
def shared_dataset(data_xy, borrow=True):
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=borrow)
shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=borrow)
return shared_x, T.cast(shared_y, 'int32')
def Load_data(dataset):
print '... loading data'
train_set, valid_set, test_set = cPickle.load( gzip.open(dataset, 'rb') )
train_set_x, train_set_y = shared_dataset(train_set)
test_set_x, test_set_y = shared_dataset(test_set)
valid_set_x, valid_set_y = shared_dataset(valid_set)
rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)]
return rval
def Load_data_ind(dataset):
print '... loading data'
test_set = cPickle.load( gzip.open(dataset, 'rb') )
test_set_x, test_set_y = shared_dataset(test_set)
return [(test_set_x, test_set_y)]
def Load_npdata(dataset):
print '... loading data'
datasets = np.load(dataset)
test_setx = datasets['test_seq']
test_sety = datasets['test_lab']
test_set = (test_setx, test_sety)
test_set_x, test_set_y = shared_dataset(test_set)
return [(test_set_x, test_set_y)]