forked from muzishen/IMAGDressing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
358 lines (302 loc) · 15.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import sys
from PIL import Image
import gradio as gr
import numpy as np
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from dressing_sd.pipelines.IMAGDressing_v1_pipeline_ipa_controlnet import IMAGDressing_v1
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from torchvision import transforms
import cv2
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
import diffusers
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, LoRAIPAttnProcessor2_0
from diffusers import ControlNetModel, UNet2DConditionModel, \
AutoencoderKL, DDIMScheduler
from adapter.resampler import Resampler
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler
from typing import List
import torch
import argparse
import os
from controlnet_aux import OpenposeDetector
from insightface.app import FaceAnalysis
from insightface.utils import face_align
parser = argparse.ArgumentParser(description='IMAGDressing-v1')
parser.add_argument('--if_ipa', type=bool, default=True)
parser.add_argument('--if_control', type=bool, default=True)
parser.add_argument('--model_weight', type=str, required=True)
parser.add_argument('--server_port', type=int, required=True)
args = parser.parse_args()
args.device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(args.device).__contains__("cuda") else torch.float32
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse').to(dtype=torch.float16, device=args.device)
tokenizer = CLIPTokenizer.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="text_encoder").to(dtype=torch.float16, device=args.device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
#face_model
app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})])
app.prepare(ctx_id=0, det_size=(640, 640))
# def ref proj weight
image_proj = Resampler(
dim=unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=16,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
image_proj = image_proj.to(dtype=torch.float16, device=args.device)
# set attention processor
attn_procs = {}
st = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
else:
attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
del st
ref_unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(
dtype=torch.float16,
device=args.device)
ref_unet.set_attn_processor(
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
model_sd = torch.load(args.model_weight, map_location="cpu")["module"]
ref_unet_dict = {}
unet_dict = {}
image_proj_dict = {}
adapter_modules_dict = {}
for k in model_sd.keys():
if k.startswith("ref_unet"):
ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
elif k.startswith("proj"):
image_proj_dict[k.replace("proj.", "")] = model_sd[k]
elif k.startswith("adapter_modules") and 'ref' in k:
adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k]
else:
print(k)
ref_unet.load_state_dict(ref_unet_dict)
image_proj.load_state_dict(image_proj_dict)
adapter_modules.load_state_dict(adapter_modules_dict, strict=False)
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
control_net_openpose = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_openpose",
torch_dtype=torch.float16).to(device=args.device)
img_transform = transforms.Compose([
transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
openpose_model = OpenposeDetector.from_pretrained('lllyasviel/ControlNet').to(args.device)
unet.requires_grad_(False)
ref_unet.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
def resize_img(input_image, max_side=640, min_side=512, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
return input_image
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
face_guidance_scale, self_guidance_scale, cross_guidance_scale, if_ipa, if_postprocess, if_control, denoise_steps, seed=42):
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch',model_revision='v1.0.0')
if prompt is None:
prompt = "a photography of a model"
prompt = prompt + ', best quality, high quality'
print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
clip_image_processor = CLIPImageProcessor()
if not garm_img:
raise gr.Error("请上传衣服 / Please upload garment")
clothes_img = resize_img(garm_img)
vae_clothes = img_transform(clothes_img).unsqueeze(0)
ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
if if_ipa:
faces = app.get(face_img)
if not faces:
raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
else:
faceid_embeds = None
face_clip_image = None
if if_control:
pose_img = openpose_model(pose_img.convert("RGB"))
# pose_img.save('pose.png')
pose_image = diffusers.utils.load_image(pose_img)
else:
pose_image = None
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
text_encoder=text_encoder, image_encoder=image_encoder,
ip_ckpt='./ckpt/ip-adapter-faceid-plus_sd15.bin',
ImgProj=image_proj, controlnet=control_net_openpose,
scheduler=noise_scheduler,
safety_checker=StableDiffusionSafetyChecker,
feature_extractor=CLIPImageProcessor)
generator = torch.Generator(args.device).manual_seed(seed) if seed is not None else None
output = pipe(
ref_image=vae_clothes,
prompt=prompt,
ref_clip_image=ref_clip_image,
pose_image=pose_image,
face_clip_image=face_clip_image,
faceid_embeds=faceid_embeds,
null_prompt='',
negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality',
width=512,
height=640,
num_images_per_prompt=1,
guidance_scale=caption_guidance_scale,
image_scale=cloth_guidance_scale,
ipa_scale=face_guidance_scale,
s_lora_scale= self_guidance_scale,
c_lora_scale= cross_guidance_scale,
generator=generator,
num_inference_steps=denoise_steps,
).images
if if_postprocess and if_ipa:
output_array = np.array(output[0])
bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
bgr_image = Image.fromarray(bgr_array)
result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
return result[OutputKeys.OUTPUT_IMG]
return output[0]
example_path = os.path.join(os.path.dirname(__file__), 'assets')
garm_list = os.listdir(os.path.join(example_path,"images"))
garm_list_path = [os.path.join(example_path,"garment",garm) for garm in garm_list]
face_list = os.listdir(os.path.join(example_path,"images"))
face_list_path = [os.path.join(example_path,"face",face) for face in face_list]
pose_list = os.listdir(os.path.join(example_path,"images"))
pose_list_path = [os.path.join(example_path,"pose",pose) for pose in pose_list]
def process_image(image):
return image
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚")
gr.Markdown(
"Customize your virtual look with ease—adjust your appearance, pose, and garment as you like<br>."
"If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!<br>"
"Your support fuels the development of new versions."
)
with gr.Row():
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
example = gr.Examples(
inputs=garm_img,
fn=process_image,
outputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
imgs = gr.Image(label="Face", sources='upload', type="numpy")
with gr.Row():
is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
fn=process_image,
outputs=imgs,
examples=face_list_path
)
with gr.Row():
is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
with gr.Column():
pose_img = gr.Image(label="Pose", sources='upload', type="pil")
with gr.Row():
is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False)
example = gr.Examples(
inputs=pose_img,
examples_per_page=8,
fn=process_image,
outputs=pose_img,
examples=pose_list_path)
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
# Add usage tips below the output image
gr.Markdown("""
### Usage Tips
- **Upload Images**: Upload your desired garment, face, and pose images in the respective sections.
- **Select Options**: Use the checkboxes to include face and pose in the generated output.
- **View Output**: The resulting image will be displayed in the Output section.
- **Examples**: Click on example images to quickly load and test different configurations.
- **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters.
- **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing).
""")
with gr.Column():
try_button = gr.Button(value="Dressing")
with gr.Accordion(label="Advanced Settings", open=True):
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
show_label=False, elem_id="prompt")
with gr.Row():
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.85, step=0.1,
visible=True)
with gr.Row():
caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=6.5, step=0.1,
visible=True)
with gr.Row():
face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
visible=True)
with gr.Row():
self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
visible=True)
with gr.Row():
cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
visible=True)
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508)
try_button.click(fn=dress_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale, self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
outputs=[image_out], api_name='IMAGDressing-v1')
image_blocks.launch(server_port=args.server_port) #