-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
232 lines (192 loc) · 9.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import yaml
import time
import argparse
import importlib
import os.path as osp
from utils import AverageMeter, dict2namespace, update_cfgdict_hparam_lst, flat_dict
from torch.backends import cudnn
from utils import SummaryWriter
def get_args():
# command line args
parser = argparse.ArgumentParser(description='Repository entry')
parser.add_argument('config', type=str,
help='The configuration file.')
parser.add_argument('--log_dir', type=str, default="logs/",
help='The logging directory.')
# distributed training
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all '
'available GPUs.')
# Resume:
parser.add_argument('--resume', default=False, action='store_true')
parser.add_argument('--pretrained', default=None, type=str,
help="Pretrained cehckpoint")
# Resume if there is a lastest.pt, otherwise don't fail
parser.add_argument('--soft_resume', default=False, action='store_true')
# Test run:
parser.add_argument('--test_run', default=False, action='store_true')
parser.add_argument('--no_run_time_postfix',
default=False, action='store_true')
# Hyper parameters
parser.add_argument('--hparams', default=[], nargs="+")
parser.add_argument('--no_append_hparams_to_name',
default=False, action='store_true')
args = parser.parse_args()
# parse config file
with open(args.config, 'r') as f:
config_dict = yaml.load(f, Loader=yaml.Loader)
config_dict, hparam_str = update_cfgdict_hparam_lst(
config_dict, args.hparams, strict=True)
# config, hparam_str = update_cfg_hparam_lst(
# config, args.hparams, strict=True)
# Currently save dir and log_dir are the same
# if not hasattr(config, "log_dir"):
if "log_dir" not in config_dict:
# Create log_name
if args.test_run:
cfg_file_name = "test"
else:
cfg_file_name = os.path.splitext(os.path.basename(args.config))[0]
if not args.no_run_time_postfix:
run_time = time.strftime('%Y-%b-%d-%H-%M-%S')
else:
run_time = ""
post_fix = run_time
if not args.no_append_hparams_to_name:
post_fix = hparam_str + run_time
os.makedirs(args.log_dir, exist_ok=True)
config_dict["log_dir"] = "%s/%s_%s" % (args.log_dir, cfg_file_name, post_fix)
config_dict["log_name"] = "%s/%s_%s" % (args.log_dir, cfg_file_name, post_fix)
config_dict["log_name_small"] = "logs_small/%s_%s" % (cfg_file_name, post_fix)
config_dict["save_dir"] = "%s/%s_%s" % (args.log_dir, cfg_file_name, post_fix)
os.makedirs(osp.join(config_dict["log_dir"], 'config'), exist_ok=True)
out_yaml_file = osp.join(config_dict["log_dir"], "config", "config.yaml")
with open(out_yaml_file, "w") as outf:
yaml.dump(dict2namespace(config_dict), outf)
return args, config_dict
def main_worker(cfgdict, args):
cfg = dict2namespace(cfgdict)
# basic setup
cudnn.benchmark = True
# Customized summary writer that write another copy of scalars
# into a small log_dir (so that it's easier to load for tensorboard)
writer = SummaryWriter(
log_dir=cfg.log_name,
small_log_dir=getattr(cfg, "log_name_small", None))
writer.add_hparams(flat_dict(cfgdict), {"loss": 0.})
# writer.add_text("config", json.dumps(flat_dict(cfgdict), indent=2))
trainer_lib = importlib.import_module(cfg.trainer.type)
trainer = trainer_lib.Trainer(cfg, args)
start_epoch = 0
if args.resume or args.soft_resume:
if args.pretrained is not None:
only_model = True if cfg.trainer.get("reg", False) or cfg.trainer.get("is_gp", False) else False
# import pdb
# pdb.set_trace()
start_epoch = trainer.resume(args.pretrained, only_model=only_model)
else:
latest = osp.join(cfg.log_dir, "latest.pt")
if osp.isfile(latest) or not args.soft_resume:
# If the file doesn't exist, and soft resume is not specified
# then it will throw errors.
start_epoch = trainer.resume(latest)
# If test run, go through the validation loop first
if args.test_run:
trainer.save(epoch=-1, step=-1)
test_loader = trainer.get_dataloader("test")
val_info = trainer.validate(test_loader, epoch=-1)
trainer.log_val(val_info, writer=writer, epoch=-1)
# main training loop
print("Start epoch: %d End epoch: %d" % (start_epoch, cfg.trainer.epochs))
step = 0
duration_meter = AverageMeter("Duration")
updatetime_meter = AverageMeter("Update")
loader_meter = AverageMeter("Loader time")
logtime_meter = AverageMeter("Log time")
mctime_meter = AverageMeter("MC Time")
mcfwdtime_meter = AverageMeter("MC Fwd Time")
ffctime_meter = AverageMeter("FFC Time")
# updatetime = 0
# loadertime = 0
# mc_time = 0
# mc_fwd_time = 0
# ffc_time = 0
for epoch in range(start_epoch, cfg.trainer.epochs):
train_loader, time_capsule = trainer.get_dataloader("train", epoch=epoch)
test_loader = trainer.get_dataloader("test", epoch=epoch)
pre_update_info = trainer.before_update(dataset=train_loader.dataset, epoch=epoch)
# print("pre_update_info", type(pre_update_info))
# train for one epoch
iter_start = time.time()
loader_start = time.time()
for bidx, data in enumerate(train_loader):
loader_duration = time.time() - loader_start
loader_meter.update(loader_duration)
# loadertime += loader_duration
start_time = time.time()
step = bidx + len(train_loader) * epoch + 1
logs_info = trainer.update(data, epoch=epoch)
duration = time.time() - start_time
updatetime_meter.update(duration)
# updatetime += duration
logtime_start = time.time()
if step % int(cfg.log_every_n_steps) == 0 or step == 1:
# print("step", step)
print("Epoch %d Batch [%2d/%2d] Time/Iter: Train[%3.2fs] "
"Update[%3.2fs] Log[%3.2fs] Load[%3.2fs] Loss %2.5f"
% (epoch, bidx, len(train_loader),
duration_meter.avg,
updatetime_meter.avg, logtime_meter.avg,
loader_meter.avg, logs_info['loss']))
# writer.add_hparams(flat_dict(cfgdict), {"loss": logs_info["loss"]})
visualize = step % int(cfg.viz_every_n_steps) == 0 or step == 1
# save_mesh = step % int(cfg.save_mesh_every_n_steps) == 0 or step == 1
# assert int(cfg.save_mesh_every_n_steps) >= int(cfg.viz_every_n_steps)
# assert (int(cfg.save_mesh_every_n_steps) % int(cfg.viz_every_n_steps) == 0)
logs_info["pre_update_info"] = pre_update_info
if bidx == 0 and time_capsule is not None: # epoch has just started so these times need to be logged
mctime_meter.update(time_capsule["mc_time"])
logs_info["mc_time"] = mctime_meter.avg
mcfwdtime_meter.update(time_capsule["mc_fwd_time"])
logs_info["mc_fwd_time"] = mcfwdtime_meter.avg
ffctime_meter.update(time_capsule["ffc_time"])
logs_info["ffc_time"] = ffctime_meter.avg
if (bidx + 1) == len(train_loader): # epoch is about to end so these times need to be logged
logs_info["opt_time"] = updatetime_meter.avg
logs_info["newsdfcalc_time"] = loader_meter.avg
# print("visualize", visualize)
trainer.log_train(
logs_info, data,
writer=writer, epoch=epoch, step=step,
visualize=visualize)
logtime_duration = time.time() - logtime_start
logtime_meter.update(logtime_duration)
iter_duration = time.time() - iter_start
duration_meter.update(iter_duration)
# Reset loader time
loader_start = time.time()
# Save first so that even if the visualization bugged,
# we still have something
if (epoch + 1) % int(cfg.save_every_n_epochs) == 0 and \
int(cfg.save_every_n_epochs) > 0:
trainer.save(epoch=epoch, step=step)
if (epoch + 1) % int(cfg.val_every_n_epochs) == 0 and \
int(cfg.val_every_n_epochs) > 0:
val_info = trainer.validate(test_loader, epoch=epoch)
trainer.log_val(val_info, writer=writer, epoch=epoch)
# Signal the trainer to cleanup now that an epoch has ended
trainer.epoch_end(epoch, writer=writer)
# Final round of validation
val_info = trainer.validate(test_loader, epoch=epoch + 1)
trainer.log_val(val_info, writer=writer, epoch=epoch + 1)
trainer.save(epoch=epoch, step=step)
writer.close()
if __name__ == '__main__':
# command line args
args, cfgdict = get_args()
print("Arguments:")
print(args)
print("Configuration:")
print(cfgdict)
main_worker(cfgdict, args)