-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
166 lines (139 loc) · 5.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, TQDMProgressBar, EarlyStopping
from pytorch_lightning.plugins import DDPPlugin
from model import LightningModel
import hydra
from omegaconf import DictConfig
from loguru import logger
import os
# import albumentations as A
# from albumentations.pytorch import ToTensorV2
import torchvision.transforms as T
from torchvision.datasets import ImageNet
@hydra.main(config_path=".", config_name="config")
def main(config: DictConfig) -> None:
base_dir = config.train.base_dir
checkpoint_dir = os.path.join(base_dir, 'checkpoints')
# directory internally used by pytorch lightning
trainer_root_dir = os.path.join(base_dir, 'trainer')
os.makedirs(trainer_root_dir, exist_ok=True)
wandb_enabled = bool(config.wandb.enabled)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
logger.info(f"Created checkpoint directory {checkpoint_dir}")
if wandb_enabled:
# directory internally used by wandb
wandb_log_dir = os.path.join(base_dir, 'wandb')
os.makedirs(wandb_log_dir, exist_ok=True)
if config.wandb.login_key != 'None' and config.wandb.login_key is not None:
import wandb
wandb.login(key=config.wandb.login_key)
lightning_logger = WandbLogger(
name=config.expr_name,
project=config.wandb.project,
save_dir=base_dir
)
else:
lightning_logger = True
if config.dataloader.use_dali:
pass # Initializing inside model
else:
train_transform = T.Compose([
T.Resize([224, 224]),
T.RandomHorizontalFlip(p=0.5),
T.RandomVerticalFlip(p=0.5),
T.RandomAutocontrast(p=0.5),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
val_transform = T.Compose([
T.Resize([224, 224]),
T.ToTensor(),
T.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
logger.info("Loading trainset")
train_dataset = ImageNet(
root=config.dataloader.basepath,
split='train',
transform=train_transform,
# target_transform=target_transform
)
logger.info("Done loading trainset")
logger.info("Loading validset")
val_dataset = ImageNet(
root=config.dataloader.basepath,
split='val',
transform=val_transform,
# target_transform=target_transform
)
logger.info("Done loading validset")
train_loader = DataLoader(
train_dataset,
batch_size=config.dataloader.batch_size,
shuffle=True,
num_workers=config.dataloader.num_workers,
pin_memory=True,
persistent_workers=True
)
val_loader = DataLoader(
val_dataset,
batch_size=64,
shuffle=False,
num_workers=4,
pin_memory=True,
persistent_workers=True
)
model = LightningModel(config)
if wandb_enabled:
lightning_logger.watch(model)
if config.train.gpus == 0:
logger.warning("Training with CPU, falling back to BF16 format")
strategy = None
if config.train.strategy and config.train.strategy.lower() != 'none':
strategy = config.train.strategy
if strategy.lower() == 'ddp':
strategy = DDPPlugin(find_unused_parameters=False)
trainer = pl.Trainer(
logger=lightning_logger,
default_root_dir=trainer_root_dir,
accelerator='gpu' if config.train.gpus > 0 else 'cpu',
gpus=config.train.gpus,
strategy=strategy,
precision=config.train.precision if config.train.gpus > 0 else 'bf16',
max_epochs=config.train.epochs,
limit_train_batches=config.train.limit_train_batches,
limit_val_batches=config.train.limit_val_batches,
enable_progress_bar=not config.headless,
callbacks=[
# TQDMProgressBar(refresh_rate=1),
ModelCheckpoint(
dirpath=checkpoint_dir,
filename='%s-epoch{epoch:04d}-val_acc{validation/accuracy:.2f}' % (config.expr_name),
mode="max", monitor="validation/f1"
),
LearningRateMonitor("epoch"),
EarlyStopping(
monitor="validation/accuracy",
patience=5,
min_delta=0.005,
mode="max",
)
]
)
if wandb_enabled:
trainer.logger._log_graph = True
trainer.logger._default_hp_metric = None
if config.dataloader.use_dali:
trainer.fit(model) # Dataloader is initialized inside model
else:
trainer.fit(model, train_loader, val_loader)
if __name__ == '__main__':
main()