diff --git a/README.md b/README.md
index 92cd3ee..ebadea7 100644
--- a/README.md
+++ b/README.md
@@ -12,7 +12,7 @@ My xaringan theme (from [xaringanthemer](https://pkg.garrickadenbuie.com/xaringa
```
mono_accent(
base_color = "#F48024",
- header_font_google = google_font("IBM Plex Sans"),
+ header_font_google = google_font("IBM Plex Sans", "700"),
text_font_google = google_font("IBM Plex Sans Condensed"),
code_font_google = google_font("IBM Plex Mono")
)
diff --git a/css/footer_plus.css b/css/footer_plus.css
index 0fafa16..2d74814 100644
--- a/css/footer_plus.css
+++ b/css/footer_plus.css
@@ -1,4 +1,4 @@
-.large { font-size: 150% }
+.large { font-size: 160% }
.title-slide .remark-slide-number {
display: none;
diff --git a/css/xaringan-themer.css b/css/xaringan-themer.css
index ff9a7b7..9388451 100644
--- a/css/xaringan-themer.css
+++ b/css/xaringan-themer.css
@@ -17,7 +17,7 @@
*
* ------------------------------------------------------- */
@import url(https://fonts.googleapis.com/css?family=IBM+Plex+Sans+Condensed);
-@import url(https://fonts.googleapis.com/css?family=IBM+Plex+Sans);
+@import url(https://fonts.googleapis.com/css?family=IBM+Plex+Sans:700);
@import url(https://fonts.googleapis.com/css?family=IBM+Plex+Mono);
diff --git a/slides.Rmd b/slides.Rmd
index 817451e..7d80306 100644
--- a/slides.Rmd
+++ b/slides.Rmd
@@ -46,11 +46,11 @@ background-size: cover
-# Text Modeling
+# **Text Modeling**
### USING TIDY DATA PRINCIPLES
-### Julia Silge | IBM Community Day: AI
+.large[**Julia Silge | IBM Community Day: AI**]
---
class: left, middle
@@ -74,7 +74,7 @@ background-size: cover
background-image: url(figs/white_bg.svg)
background-size: cover
-# Text in the real world
+# **Text in the real world**
--
@@ -122,7 +122,7 @@ background-size: 450px
background-image: url(figs/white_title.svg)
background-size: cover
-# Two powerful NLP modeling approaches
+# **Two powerful NLP techniques**
--
@@ -137,13 +137,13 @@ background-size: cover
background-image: url(figs/white_bg.svg)
background-size: cover
-# Topic modeling
+# **Topic modeling**
-- .large[Each document = mixture of topics]
+- .large[Each **document** = mixture of topics]
--
-- .large[Each topic = mixture of words]
+- .large[Each **topic** = mixture of words]
---
@@ -157,11 +157,11 @@ class: center, middle
background-image: url(figs/white_title.svg)
background-size: cover
-# GREAT LIBRARY HEIST `r emo::ji("sleuth")`
+# **GREAT LIBRARY HEIST** `r emo::ji("sleuth")`
---
-## Downloading your text data
+## **Downloading your text data**
```{r}
library(tidyverse)
@@ -180,7 +180,7 @@ books
---
-## Someone has torn your books apart! `r emo::ji("sob")`
+## **Someone has torn your books apart!** `r emo::ji("sob")`
```{r}
@@ -198,7 +198,7 @@ by_chapter
---
-## Can we put them back together?
+## **Can we put them back together?**
```{r}
library(tidytext)
@@ -214,7 +214,7 @@ word_counts
---
-## Can we put them back together?
+## **Can we put them back together?**
```{r}
words_sparse <- word_counts %>%
@@ -225,7 +225,7 @@ class(words_sparse)
---
-## Train a topic model
+## **Train a topic model**
Use a sparse matrix or a `quanteda::dfm` object as input
@@ -240,7 +240,7 @@ summary(topic_model)
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
.large[Time for tidying!]
@@ -252,7 +252,7 @@ chapter_topics
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
```{r}
top_terms <- chapter_topics %>%
@@ -265,7 +265,7 @@ top_terms
```
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
```{r, eval=FALSE}
top_terms %>%
@@ -293,7 +293,7 @@ top_terms %>%
---
-## How are documents classified?
+## **How are documents classified?**
```{r}
chapters_gamma <- tidy(topic_model, matrix = "gamma",
@@ -304,7 +304,7 @@ chapters_gamma
---
-## How are documents classified?
+## **How are documents classified?**
```{r}
chapters_parsed <- chapters_gamma %>%
@@ -315,7 +315,7 @@ chapters_parsed
---
-## How are documents classified?
+## **How are documents classified?**
```{r, eval=FALSE}
chapters_parsed %>%
@@ -343,14 +343,14 @@ class: center, middle
background-image: url(figs/white_title.svg)
background-size: cover
-# GOING FARTHER `r emo::ji("rocket")`
+# **GOING FARTHER** `r emo::ji("rocket")`
---
background-image: url(figs/white_bg.svg)
background-size: cover
-## Tidying model output
+## **Tidying model output**
### Which words in each document are assigned to which topics?
@@ -364,7 +364,7 @@ background-size: 850px
---
-## Using stm
+## **Using stm**
- .large[Document-level covariates]
@@ -393,7 +393,7 @@ background-size: 950px
background-image: url(figs/white_title.svg)
background-size: cover
-# Stemming?
+# **Stemming?**
.large[Advice from [Schofield & Mimno](https://mimno.infosci.cornell.edu/papers/schofield_tacl_2016.pdf)]
@@ -417,12 +417,12 @@ background-image: url(figs/white_title.svg)
background-size: cover
-# Text classification
+# **Text classification**
---
-## Downloading your text data
+## **Downloading your text data**
```{r}
library(tidyverse)
@@ -440,7 +440,7 @@ books
---
-## Making a tidy dataset
+## **Making a tidy dataset**
.large[Use this kind of data structure for EDA! `r emo::ji("nail")`]
@@ -458,7 +458,7 @@ tidy_books
---
-## Cast to a sparse matrix
+## **Cast to a sparse matrix**
.large[And build a dataframe with a response variable]
@@ -474,7 +474,7 @@ books_joined <- data_frame(document = as.integer(rownames(sparse_words))) %>%
---
-## Train a glmnet model
+## **Train a glmnet model**
```{r}
library(glmnet)
@@ -490,7 +490,7 @@ model <- cv.glmnet(sparse_words, is_jane, family = "binomial",
---
-## Tidying our model
+## **Tidying our model**
.large[Tidy, then filter to choose some lambda from glmnet output]
@@ -508,7 +508,7 @@ Intercept <- coefs %>%
---
-## Tidying our model
+## **Tidying our model**
```{r}
classifications <- tidy_books %>%
@@ -522,7 +522,7 @@ classifications
---
-## Understanding our model
+## **Understanding our model**
```{r, eval=FALSE}
coefs %>%
@@ -551,7 +551,7 @@ coefs %>%
---
-## ROC
+## **ROC**
```{r}
comment_classes <- classifications %>%
@@ -569,7 +569,7 @@ roc <- comment_classes %>%
---
-## ROC
+## **ROC**
```{r}
roc %>%
@@ -592,7 +592,7 @@ roc %>%
---
-## AUC for model
+## **AUC for model**
```{r}
roc %>%
@@ -601,7 +601,7 @@ roc %>%
---
-## Misclassifications
+## **Misclassifications**
Let's talk about misclassifications. Which documents here were incorrectly predicted to be written by Jane Austen?
@@ -616,7 +616,7 @@ roc %>%
---
-## Misclassifications
+## **Misclassifications**
Let's talk about misclassifications. Which documents here were incorrectly predicted to *not* be written by Jane Austen?
@@ -636,14 +636,14 @@ background-image: url(figs/tmwr_0601.png)
background-position: 50% 70%
background-size: 750px
-## Workflow for text mining/modeling
+## **Workflow for text mining/modeling**
---
background-image: url(figs/lizzieskipping.gif)
background-position: 50% 55%
background-size: 750px
-# Go explore real-world text!
+# **Go explore real-world text!**
---
diff --git a/slides.html b/slides.html
index 61d3597..546e3d1 100644
--- a/slides.html
+++ b/slides.html
@@ -33,11 +33,11 @@
<img src="figs/so-logo.svg" width="30%"/>
-# Text Modeling
+# **Text Modeling**
### USING TIDY DATA PRINCIPLES
-### Julia Silge | IBM Community Day: AI
+.large[**Julia Silge | IBM Community Day: AI**]
---
class: left, middle
@@ -61,7 +61,7 @@
background-image: url(figs/white_bg.svg)
background-size: cover
-# Text in the real world
+# **Text in the real world**
--
@@ -109,7 +109,7 @@
background-image: url(figs/white_title.svg)
background-size: cover
-# Two powerful NLP modeling approaches
+# **Two powerful NLP techniques**
--
@@ -124,13 +124,13 @@
background-image: url(figs/white_bg.svg)
background-size: cover
-# Topic modeling
+# **Topic modeling**
-- .large[Each document = mixture of topics]
+- .large[Each **document** = mixture of topics]
--
-- .large[Each topic = mixture of words]
+- .large[Each **topic** = mixture of words]
---
@@ -144,11 +144,11 @@
background-image: url(figs/white_title.svg)
background-size: cover
-# GREAT LIBRARY HEIST 🕵
+# **GREAT LIBRARY HEIST** 🕵️♂️
---
-## Downloading your text data
+## **Downloading your text data**
```r
@@ -185,7 +185,7 @@
---
-## Someone has torn your books apart! 😭
+## **Someone has torn your books apart!** 😭
@@ -221,7 +221,7 @@
---
-## Can we put them back together?
+## **Can we put them back together?**
```r
@@ -254,7 +254,7 @@
---
-## Can we put them back together?
+## **Can we put them back together?**
```r
@@ -272,7 +272,7 @@
---
-## Train a topic model
+## **Train a topic model**
Use a sparse matrix or a `quanteda::dfm` object as input
@@ -315,7 +315,7 @@
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
.large[Time for tidying!]
@@ -345,7 +345,7 @@
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
```r
@@ -376,7 +376,7 @@
```
---
-## Exploring the output of topic modeling
+## **Exploring the output of topic modeling**
```r
@@ -394,7 +394,7 @@
---
-## How are documents classified?
+## **How are documents classified?**
```r
@@ -423,7 +423,7 @@
---
-## How are documents classified?
+## **How are documents classified?**
```r
@@ -452,7 +452,7 @@
---
-## How are documents classified?
+## **How are documents classified?**
```r
@@ -474,14 +474,14 @@
background-image: url(figs/white_title.svg)
background-size: cover
-# GOING FARTHER 🚀
+# **GOING FARTHER** 🚀
---
background-image: url(figs/white_bg.svg)
background-size: cover
-## Tidying model output
+## **Tidying model output**
### Which words in each document are assigned to which topics?
@@ -495,7 +495,7 @@
---
-## Using stm
+## **Using stm**
- .large[Document-level covariates]
@@ -525,7 +525,7 @@
background-image: url(figs/white_title.svg)
background-size: cover
-# Stemming?
+# **Stemming?**
.large[Advice from [Schofield & Mimno](https://mimno.infosci.cornell.edu/papers/schofield_tacl_2016.pdf)]
@@ -549,12 +549,12 @@
background-size: cover
-# Text classification
+# **Text classification**
<h1 class="fa fa-balance-scale fa-fw"></h1>
---
-## Downloading your text data
+## **Downloading your text data**
```r
@@ -590,7 +590,7 @@
---
-## Making a tidy dataset
+## **Making a tidy dataset**
.large[Use this kind of data structure for EDA! 💅]
@@ -626,7 +626,7 @@
---
-## Cast to a sparse matrix
+## **Cast to a sparse matrix**
.large[And build a dataframe with a response variable]
@@ -643,7 +643,7 @@
---
-## Train a glmnet model
+## **Train a glmnet model**
```r
@@ -659,7 +659,7 @@
---
-## Tidying our model
+## **Tidying our model**
.large[Tidy, then filter to choose some lambda from glmnet output]
@@ -678,7 +678,7 @@
---
-## Tidying our model
+## **Tidying our model**
```r
@@ -710,7 +710,7 @@
---
-## Understanding our model
+## **Understanding our model**
```r
@@ -729,7 +729,7 @@
---
-## ROC
+## **ROC**
```r
@@ -748,7 +748,7 @@
---
-## ROC
+## **ROC**
```r
@@ -779,7 +779,7 @@
---
-## AUC for model
+## **AUC for model**
```r
@@ -796,7 +796,7 @@
---
-## Misclassifications
+## **Misclassifications**
Let's talk about misclassifications. Which documents here were incorrectly predicted to be written by Jane Austen?
@@ -814,21 +814,21 @@
## # A tibble: 10 x 2
## Probability text
## <dbl> <chr>
-## 1 0.890 " But who shall dwell in these worlds if they be"
-## 2 0.857 "horizon--\"they're starving in heaps, bolting, treading o…
-## 3 0.821 Her eyes met my brother's, and her hesitation ended.
-## 4 0.961 did not know what to make of her. One shell, and they wou…
-## 5 0.806 Such things, I told myself, could not be.
-## 6 0.991 been out of England before, she would rather die than trus…
-## 7 0.910 breed. I tell you, I'm grim set on living. And if I'm no…
-## 8 0.876 all seriously. Yet though they wore no clothing, it was i…
-## 9 0.893 her.
-## 10 0.880 evening paper, after wiring for authentication from him an…
+## 1 0.860 reading steadily with all his thoughts about his subject, …
+## 2 0.927 range not very different from ours except that, according …
+## 3 0.880 they did not wish to destroy the country but only to crush…
+## 4 0.827 decorum were necessarily different from ours; and not only…
+## 5 0.901 the innkeeper, she would, I think, have urged me to stay in
+## 6 0.880 evening paper, after wiring for authentication from him an…
+## 7 0.832 "\"Take this!\" said the slender lady, and she gave my bro…
+## 8 0.806 Such things, I told myself, could not be.
+## 9 0.962 "\"Be a man!\" said I. \"You are scared out of your wits!…
+## 10 0.905 had my doubts. You're slender. I didn't know that it was…
```
---
-## Misclassifications
+## **Misclassifications**
Let's talk about misclassifications. Which documents here were incorrectly predicted to *not* be written by Jane Austen?
@@ -846,16 +846,16 @@
## # A tibble: 10 x 2
## Probability text
## <dbl> <chr>
-## 1 0.190 my part, except the shops and public places. The country i…
-## 2 0.0759 me, I did not once put my foot out of doors, though I was …
-## 3 0.176 Newcastle, a place quite northward, it seems, and there th…
-## 4 0.173 I was never more annoyed! The insipidity, and yet the nois…
-## 5 0.174 "of selecting a wife, as I certainly did.\""
-## 6 0.0456 They descended the hill, crossed the bridge, and drove to …
-## 7 0.195 the first of September, than any body else in the country.
-## 8 0.187 half-a-mile, and then found themselves at the top of a con…
-## 9 0.184 glancing over it, said, in a colder voice:
-## 10 0.0271 to the edge of the water, and one of its narrowest parts. …
+## 1 0.135 occasional appearance of some trout in the water, and talk…
+## 2 0.176 Newcastle, a place quite northward, it seems, and there th…
+## 3 0.184 glancing over it, said, in a colder voice:
+## 4 0.187 half-a-mile, and then found themselves at the top of a con…
+## 5 0.0226 window that he wore a blue coat, and rode a black horse.
+## 6 0.173 I was never more annoyed! The insipidity, and yet the nois…
+## 7 0.174 "of selecting a wife, as I certainly did.\""
+## 8 0.157 "as I sit by the fire.\""
+## 9 0.164 one sleepless night out of two.
+## 10 0.193 struck with the action of doing a very gallant thing, and …
```
---
@@ -865,14 +865,14 @@
background-position: 50% 70%
background-size: 750px
-## Workflow for text mining/modeling
+## **Workflow for text mining/modeling**
---
background-image: url(figs/lizzieskipping.gif)
background-position: 50% 55%
background-size: 750px
-# Go explore real-world text!
+# **Go explore real-world text!**
---