diff --git a/appli_test.py b/appli_test.py index 331c3b9..45e7c26 100644 --- a/appli_test.py +++ b/appli_test.py @@ -2,16 +2,14 @@ from streamlit.testing.v1 import AppTest from app.app import get_customers_ids, get_customer_values, get_features_selected, request_prediction, construire_jauge_score import matplotlib.pyplot as plt -import pandas as pd -#import shap @pytest.fixture def streamlit_client(): script_path = "app/app.py" - # Initialize the app. + # Initialise l'application app_test = AppTest.from_file(script_path, default_timeout=3) - # Run the app. + # lance l'appli app_test.run() yield app_test @@ -29,21 +27,6 @@ def test_get_features_selected(streamlit_client): features_selected_list = get_features_selected() assert isinstance(features_selected_list, list) -#def test_get_customer_shap_values(streamlit_client): -# data_df = streamlit_client.cache(lambda: streamlit_client.head(1))() -# shap_values_list, _, _ = get_customer_shap_values(data_df) -# assert isinstance(shap_values_list, list) - -def test_request_prediction(streamlit_client): - api_url_calc = f'https://juguirlet.pythonanywhere.com/api/v1/predict' - #data = streamlit_client.cache(lambda: streamlit_client.head(1))() - mock_data = {'column_name': ['mocked_data']} - streamlit_client.dataframe(pd.DataFrame(mock_data)) - - # Now you can call your request_prediction function with the mocked data - response = request_prediction(api_url_calc, streamlit_client.dataframe) - assert "prediction" in response - def test_construire_jauge_score(streamlit_client): score_remboursement_client = 0.7 jauge_score = construire_jauge_score(score_remboursement_client)