Skip to content

Releases: juglab/FourierImageTransformer

v0.1.7

14 Jan 13:50
9abb28f
Compare
Choose a tag to compare
  • Add super-resolution implementation.
  • Add conv-block to TRec module.

v0.1.6

11 Jan 22:30
9b3f66b
Compare
Choose a tag to compare

Add real-loss to new fc_loss.

v0.1.5

11 Jan 21:43
b8115d1
Compare
Choose a tag to compare

Add new fc_loss:
torch.mean((1 + (c1.abs() - c2.abs())**2) * (2 - dot(c1_unit, c2_unit))

v0.1.4.fixed

11 Jan 20:39
Compare
Choose a tag to compare

Rebase of v0.1.4 on v0.1.3.fixed.

v0.1.4

11 Jan 15:21
b952a7f
Compare
Choose a tag to compare

Apply attenuation function to all bin-levels.

Edit: Do not use this release! Use v0.1.4.fixed.

v0.1.3.fixed

11 Jan 20:28
Compare
Choose a tag to compare

v0.1.3 uses the amplitude directly, we should use log(amplitude) to compute the normalization parameters.

v0.1.3

11 Jan 14:30
0b89fb2
Compare
Choose a tag to compare

Normalize with mag_min and mag_max computed over train-data.

Edit: Do not use this release! Use v0.1.3.fixed.

v0.1.2

11 Jan 13:08
dd80473
Compare
Choose a tag to compare

Combine fc- and real-loss.

v0.1.1

07 Jan 19:18
2c07d53
Compare
Choose a tag to compare

Rework projection approach and Fourier coefficient coordinates, and add masking:

  • New default projection has a detector of img_shape length.
  • Second option has a detector of length img-diagonal.
  • Masking can be used to reduce computation costs during training, by masking out high frequencies.

v0.1.0

29 Dec 15:46
Compare
Choose a tag to compare

First implementation of tomographic reconstruction with Fourier Image Transformers.

  • MNIST example