forked from IBM/data-prep-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal.py
57 lines (51 loc) · 2.14 KB
/
local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# (C) Copyright IBM Corp. 2024.
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
from data_processing.data_access import DataAccessLocal
from dpk_doc_id.transform import (
IDGenerator,
doc_column_name_key,
hash_column_name_key,
id_generator_key,
int_column_name_key,
)
from dpk_doc_id.transform_python import DocIDTransform
# create parameters
input_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "../test-data/input"))
output_folder = os.path.abspath(os.path.join(os.path.dirname(__file__), "../output"))
local_conf = {
"input_folder": input_folder,
"output_folder": output_folder,
}
doc_id_params = {
doc_column_name_key: "contents",
hash_column_name_key: "hash_column",
int_column_name_key: "int_id_column",
id_generator_key: IDGenerator(5),
}
doc_column_name_key = "doc_column"
hash_column_name_key = "hash_column"
int_column_name_key = "int_column"
start_id_key = "start_id"
if __name__ == "__main__":
# Here we show how to run outside of ray
# Filter transform needs a DataAccess to ready the domain list.
data_access = DataAccessLocal(local_conf)
# Create and configure the transform.
transform = DocIDTransform(doc_id_params)
# Use the local data access to read a parquet table.
table, _ = data_access.get_table(os.path.join(input_folder, "sample1.parquet"))
print(f"input table has {table.num_rows} rows")
# Transform the table
table_list, metadata = transform.transform(table)
print(f"\noutput table has {table_list[0].num_rows} rows")
print(f"output metadata : {metadata}")