-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpandas_pairs.py
333 lines (302 loc) · 11.8 KB
/
pandas_pairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# -*- coding: utf-8 -*-
# @Time : 13/9/2022 4:29 pm
# @Author : Joseph Chen
# @Email : [email protected]
# @FileName: pandas_pairs.py
"""
Copyright (C) 2020 Joseph Chen - All Rights Reserved
You may use, distribute and modify this code under the
terms of the JXW license, which unfortunately won't be
written for another century.
You should have received a copy of the JXW license with
this file. If not, please write to: [email protected]
"""
from typing import List, Dict
from datetime import datetime
import itertools
import json
import pandas as pd
import numpy as np
from statsmodels.regression.rolling import RollingOLS
from statsmodels.tsa.stattools import adfuller
from qtrader.core.security import Security, Currency
from qtrader.core.constants import Exchange
from qtrader.core.data import _get_data
def load_data(
stock_list: List[Security],
data_start: datetime,
start: datetime,
end: datetime,
lookback_period: int = None
) -> pd.DataFrame:
"""Load close prices"""
all_data = pd.DataFrame(columns=[s.code for s in stock_list])
for security in stock_list:
data = _get_data(
security=security,
start=data_start,
end=end,
dfield="kline",
dtype=['time_key', 'open', 'high', 'low', 'close', 'volume'])
if all_data.empty:
all_data = data[["time_key", "close"]].set_index("time_key")
all_data.columns = [security.code]
else:
new_data = data[["time_key", "close"]].set_index("time_key")
new_data.columns = [security.code]
all_data = all_data.join(new_data, how="outer")
all_data = all_data.ffill().bfill()
if all_data[all_data.index <= start].shape[0] < lookback_period:
raise ValueError("There is not enough lookback data, change data_start")
ret_data = pd.concat(
[all_data[all_data.index <= start].iloc[-lookback_period:],
all_data[all_data.index > start]]
)
return ret_data
def run_pairs(
data: pd.DataFrame,
asset1: str,
asset2: str,
lookback_period: int = 1440,
correlation_threshold: float = -1.1,
recalibration_interval: int = 384,
cointegration_pvalue_entry_threshold: float = 0.05,
entry_threshold: float = 1.5,
exit_threshold: float = 2.5,
max_number_of_entry: int = 1,
capital_per_entry: float = 1000000.0
):
"""run backtest for a pair"""
# (asset1, asset2) is the pair to test strategy
signals = pd.DataFrame()
signals['asset1'] = data[asset1]
signals['asset2'] = data[asset2]
# correlation
signals['corr'] = np.log(signals['asset1']).rolling(
lookback_period).corr(np.log(signals['asset2']))
recalibration_date = [0] * signals.shape[0]
recalibration_corr = [np.nan] * signals.shape[0]
for i in range(lookback_period-1, signals.shape[0], recalibration_interval):
recalibration_date[i] = 1
recalibration_corr[i] = signals['corr'].iloc[i]
signals['recalibration_date'] = recalibration_date
signals['recalibration_corr'] = recalibration_corr
signals['recalibration_corr'] = signals['recalibration_corr'].ffill()
# cointegration
model = RollingOLS(
endog=np.log(signals['asset1']),
exog=np.log(signals['asset2']),
window=lookback_period,
)
model_fit = model.fit()
gamma = [np.nan] * signals.shape[0]
gamma_lst = model_fit.params.to_numpy().reshape(-1).tolist()
for i in range(lookback_period-1, signals.shape[0], recalibration_interval):
gamma[i] = gamma_lst[i]
signals['gamma'] = gamma
signals['gamma_ffill'] = signals['gamma'].ffill()
signals['gamma_bfill'] = signals['gamma'].bfill()
signals['spread'] = np.log(signals['asset1']) - signals["gamma_ffill"] * np.log(signals['asset2'])
signals['spread_bfill'] = np.log(signals['asset1']) - signals["gamma_bfill"] * np.log(signals['asset2'])
# This code will crash for unknown reasons
# signals['adf_pvalue'] = signals['spread'].rolling(lookback_period).apply(
# lambda x: adfuller(x, autolag="AIC")[1])
adf_pvalue = [np.nan] * signals.shape[0]
for i in range(lookback_period-1, signals.shape[0], recalibration_interval):
p = adfuller(
signals['spread_bfill'].iloc[i+1-lookback_period:i+1], autolag="AIC")[1]
if isinstance(p, float):
adf_pvalue[i] = p
signals['adf_pvalue'] = adf_pvalue
signals['adf_pvalue'] = signals['adf_pvalue'].ffill()
# calculate z-score
signals['spread_zscore'] = (
(signals["spread"] - signals["spread"].rolling(lookback_period).mean())
/ signals["spread"].rolling(lookback_period).std()
)
# create entry signal - short if z-score is greater than upper limit else long
signals['entry_signals'] = 0
signals['entry_signals'] = np.select(
[(entry_threshold < signals['spread_zscore'])
& (signals['spread_zscore'] < (entry_threshold + exit_threshold)/2)
& (signals['recalibration_date'] == 0)
& (signals['gamma_ffill'] > 0.1)
& (signals['adf_pvalue'] < cointegration_pvalue_entry_threshold)
& (signals['recalibration_corr'] > correlation_threshold),
(-(entry_threshold + exit_threshold)/2 < signals['spread_zscore'])
& (signals['spread_zscore'] < -entry_threshold)
& (signals['recalibration_date'] == 0)
& (signals['gamma_ffill'] > 0.1)
& (signals['adf_pvalue'] < cointegration_pvalue_entry_threshold)
& (signals['recalibration_corr'] > correlation_threshold)],
[-1, 1],
default=0)
# Create exit signal
signals['exit_long1_short2_signals'] = 0
signals['exit_long1_short2_signals'] = np.where(
(signals['recalibration_date'] == 1)
| (signals['spread_zscore'] >= 0)
| (signals['spread_zscore'] < -exit_threshold),
1, 0)
signals['exit_short1_long2_signals'] = 0
signals['exit_short1_long2_signals'] = np.where(
(signals['recalibration_date'] == 1)
| (signals['spread_zscore'] <= 0)
| (signals['spread_zscore'] > exit_threshold),
1, 0)
# shares to buy for each position
signals['qty1'] = np.select(
[signals['gamma_ffill'] <= 1, signals['gamma_ffill'] > 1],
[capital_per_entry // signals['asset1'],
capital_per_entry / signals['gamma_ffill'] // signals['asset1']],
default=0)
signals['qty2'] = np.select(
[signals['gamma_ffill'] <= 1, signals['gamma_ffill'] > 1],
[capital_per_entry * signals['gamma_ffill'] // signals['asset2'],
capital_per_entry // signals['asset2']],
default=0)
# calculate position and pnl
position = [0] * signals.shape[0]
qty1 = [0] * signals.shape[0]
qty2 = [0] * signals.shape[0]
for i, (timestamp, row) in enumerate(signals.iterrows()):
if i < lookback_period-1:
continue
entry_signals = row['entry_signals']
exit_long1_short2_signals = row['exit_long1_short2_signals']
exit_short1_long2_signals = row['exit_short1_long2_signals']
if entry_signals == 1 and exit_long1_short2_signals:
raise ValueError("entry and exit long1|short2 signals coexist!")
if entry_signals == -1 and exit_short1_long2_signals:
raise ValueError("entry and exit short1|long2 signals coexist!")
if i == lookback_period-1:
prev_position = 0
prev_qty1 = 0
prev_qty2 = 0
else:
prev_position = position[i-1]
prev_qty1 = qty1[i - 1]
prev_qty2 = qty2[i - 1]
if prev_position == 0 and entry_signals:
position[i] = entry_signals
qty1[i] = row['qty1']
qty2[i] = row['qty2']
elif prev_position == 1 and exit_long1_short2_signals:
position[i] = 0
qty1[i] = 0
qty2[i] = 0
elif prev_position == -1 and exit_short1_long2_signals:
position[i] = 0
qty1[i] = 0
qty2[i] = 0
else:
position[i] = prev_position
qty1[i] = prev_qty1
qty2[i] = prev_qty2
signals['position'] = position
signals['qty1'] = qty1
signals['qty2'] = qty2
pnl = [0] * signals.shape[0]
for i, (timestamp, row) in enumerate(signals.iterrows()):
if i < lookback_period - 1:
continue
qty1 = row['qty1']
qty2 = row['qty2']
price1 = row['asset1']
price2 = row['asset2']
prev_price1 = signals.iloc[i - 1]['asset1']
prev_price2 = signals.iloc[i - 1]['asset2']
if position[i-1] == position[i] and position[i] != 0:
pnl[i] = pnl[i-1] + (
price1 * qty1 - price2 * qty2
- prev_price1 * qty1 + prev_price2 * qty2
)*position[i]
elif position[i-1] != 0 and position[i] == 0:
pnl[i] = pnl[i-1] + (
price1 * qty1 - price2 * qty2
- prev_price1 * qty1 + prev_price2 * qty2
)*position[i-1]
else:
pnl[i] = pnl[i-1]
signals['pnl'] = pnl
signals['pnl'] += capital_per_entry
return signals['pnl']
def run_strategy(**kwargs):
"""Run strategy for portfolio"""
# Load default parameters
with open("strategies/pairs_strategy/params.json", "r") as f:
params = json.load(f)
# Override parameters
if kwargs.get("override_indicator_cfg"):
for k, v in kwargs["override_indicator_cfg"]["params"].items():
params[k] = v
# Instruments
stock_list = [
Currency(
code="BTC.USD",
lot_size=1,
security_name="BTC.USD",
exchange=Exchange.SMART),
Currency(
code="EOS.USD",
lot_size=1,
security_name="EOS.USD",
exchange=Exchange.SMART),
Currency(
code="ETH.USD",
lot_size=1,
security_name="ETH.USD",
exchange=Exchange.SMART),
Currency(
code="LTC.USD",
lot_size=1,
security_name="LTC.USD",
exchange=Exchange.SMART),
Currency(
code="TRX.USD",
lot_size=1,
security_name="TRX.USD",
exchange=Exchange.SMART),
Currency(
code="XRP.USD",
lot_size=1,
security_name="XRP.USD",
exchange=Exchange.SMART),
]
data_start = datetime(2020, 11, 15, 0, 0, 0)
start = datetime(2021, 1, 1, 0, 0, 0)
end = datetime(2021, 12, 31, 23, 59, 59)
# Load data
data = load_data(stock_list, data_start, start, end, params["lookback_period"])
security_codes = [s.code for s in stock_list]
security_pairs = list(itertools.combinations(security_codes, 2))
# override security pairs
if kwargs.get("security_pairs"):
security_pairs = kwargs["security_pairs"]
portfolio_pnl = None
for i, security_pair in enumerate(security_pairs):
# print(i, security_pair)
pair_pnl = run_pairs(
data=data,
asset1=security_pair[0],
asset2=security_pair[1],
**params
)
pair_pnl.name = "|".join(security_pair)
if portfolio_pnl is None:
portfolio_pnl = pair_pnl.to_frame()
else:
portfolio_pnl = portfolio_pnl.join(pair_pnl, how="outer")
portfolio_pnl = portfolio_pnl.ffill().bfill()
portfolio_pnl["portfolio_value"] = portfolio_pnl.sum(axis=1)
portfolio_pnl["datetime"] = portfolio_pnl.index
return portfolio_pnl[["datetime", "portfolio_value"]]
if __name__ == "__main__":
df = run_strategy(
override_indicator_cfg=
{'params':
{'entry_threshold': 1.4055718649894686,
'exit_threshold': 3.1614296858576507}
},
)
print()