forked from A1kmm/cellml-dae-events-secondary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.xml
342 lines (318 loc) · 19.9 KB
/
models.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE article SYSTEM "-//OASIS//DTD DocBook XML" [
<!ENTITY Sum "∑" >
]>
<section lang="en">
<title>CellML Secondary Specification - DAEs with Optional Resets</title>
<section>
<title>Preliminary matters</title>
<orderedlist>
<listitem>
<para>
This specification is a secondary specification to the CellML 1.2 Specification, and so should be read together with the CellML 1.2 specification. It acts to further narrow the CellML 1.2 specification. Models and software implementations must comply with the CellML 1.2 specification to comply with this specification.
</para>
</listitem>
<listitem>
<para>
The rules provided in this specification are against the MathML 3 Strict form; the rules in this document apply to content MathML after all possible transformations to strict MathML defined in the MathML 3 specification have been applied.
</para>
</listitem>
<listitem>
<para>
Except where stated otherwise, references to variables in this specification refer to model variables, and not to individual variable element information items.
</para>
</listitem>
</orderedlist>
</section>
<section>
<title>Requirements for compliant models</title>
<orderedlist>
<listitem>
<para>
Compliant models MUST NOT contain any variables, constants, or expressions unless the type is either real or boolean, except where explicitly stated otherwise in this specification.
</para>
</listitem>
<listitem>
<para>
Every child of a math element information item in the MathML namespace must comply with one of following rules:
<orderedlist>
<listitem>
<para>The child of the MathML math element information item is an apply element information item, and the first MathML element information item child of that apply element is a symbol from the relation1 content dictionary.</para>
</listitem>
<listitem>
<para>The rules described in <xref linkend="toplevel-piecewise-rules"/>, where a child of the MathML math element is an apply element information item, and the first MathML element information child of that apply element is the piecewise symbol from the piece1 content dictionary.</para>
</listitem>
</orderedlist>
</para>
</listitem>
<listitem>
<para>
All csymbol elements in the model must either have a definitionURL attribute with value
"http://www.cellml.org/cellml/1.2#evaluatedAt", or have a cd attribute and text child
value matching a symbol on either the Generally Available List given in
<xref linkend="generalList"/> or the Specific Uses list given in
<xref linkend="specificList"/>. In this section, rules about the type of the result of an application
also apply to type of a symbol that takes no arguments.
</para>
</listitem>
<listitem>
<para>
Symbols defined in <xref linkend="generalList"/> MAY be used anywhere where the use is not inconsistent with other rules in this specification or the primary specification.
</para>
<para>
Symbols defined in <xref linkend="specificList"/> MUST NOT be used anywhere except where specifically allowed in this specification.
</para>
</listitem>
<listitem>
<para>
Where an OpenMath symbol takes an argument of STS type Boolean, the CellML type of that argument MUST be boolean.
</para>
</listitem>
<listitem>
<para>
Where the application of an OpenMath symbol produces a result of STS type Boolean, the CellML type of that result SHALL be boolean.
</para>
</listitem>
<listitem>
<para>
Where an OpenMath symbol takes an argument of an STS type given in <xref linkend="realequiv"/>, the CellML type of that argument MUST be real.
</para>
</listitem>
<listitem>
<para>
Where the application of an OpenMath symbol produces a result of an STS type given in <xref linkend="realequiv"/>, the CellML type of that result SHALL be real.
</para>
</listitem>
<listitem>
<para>
The piece symbol in content dictionary piece1 shall produce a result of type piece-real if given a first argument of type real, and a result of type piece-boolean if given a first argument of type boolean.
</para>
</listitem>
<listitem>
<para>
The otherwise symbol in content dictionary piece1 shall produce a result of type piece-real if given an argument of type real, and a result of type piece-boolean if given an argument of type boolean.
</para>
</listitem>
<listitem>
<para>
The types piece-bool and piece-real MUST NOT be used anywhere in the model (not as a variable type, a constant type, or as the inferred type of expressions) except where explicitly allowed in this specification.
</para>
</listitem>
<listitem>
<para>
All arguments to an application of the piecewise symbol in content dictionary piece1 MUST be of the same type, and that type must be either piece-real or piece-boolean. Where the type is piece-real, the result of the application SHALL be of type real. Where the type is piece-boolean, the result of the application SHALL be of type boolean.
</para>
</listitem>
<listitem>
<para>
Both arguments to an application of the eq or neq symbol in the relation1 content dictionary SHALL be of the same type.
</para>
</listitem>
<listitem>
<para>
Let n be the number of variables of type real in the model. For a model to be valid under this secondary specification, it MUST be possible to divide up the variables of type real into one independent variable and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> dependent variables. There must be precisely <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> real constraint equations (as defined in section <xref linkend="real-constraint-equations"/> that do not contain initial value expressions (as defined later in this section).
</para>
</listitem>
<listitem>
<para>
There MUST NOT be any subset of the real constraint equations that do not contain initial value expressions, of size greater than some i, but which collectively only involve i real variables (not counting references to variables where the reference occurs inside infinitesimally delayed expressions).
</para>
</listitem>
<listitem>
<para>
Application of the oriented_interval symbol in content dictionary interval1 MUST take two real arguments, and SHALL produce a value of type oriented-real-interval. The type oriented-real-interval MUST NOT be used anywhere in the model (not as a variable type, a constant type, or as the inferred type of expressions) except where specifically allowed in this specification.
</para>
</listitem>
<listitem>
<para>
Binding to the lambda symbol in content dictionary fns1 MUST be over an expression of type real, the bound variable introduced SHALL be of type real, and the binding SHALL produce a value of type real-real-lambda. The type real-real-lambda MUST NOT be used anywhere in the model (not as a variable type, a constant type, or as the inferred type of expressions) except where specifically allowed in this specification.
</para>
</listitem>
<listitem>
<para>
The defint symbol in content dictionary calculus1 MAY be applied to a first argument of type oriented-real-interval, and a second argument of type real-real-lambda.
</para>
</listitem>
<listitem>
<para>
The diff symbol in content dictionary calculus1 MAY be applied to a first argument of type real-real-lambda, giving a value of type real-real-lambda-applyonly.
</para>
</listitem>
<listitem>
<para>
The nthdiff symbol in content dictionary calculus1 MAY be applied to a first argument of type real, and a second argument of type real-real-lambda, giving a value of type real-real-lambda-applyonly. The first argument MUST be defined using the Low Complexity Subset defined in <xref linkend="low-complexity-subset"/>, and MUST have a value that is a positive integer.
</para>
</listitem>
<listitem>
<para>
Values of type real-real-lambda-applyonly MUST only occur as the operator to a MathML apply expression, and the second argument MUST be a ci reference to the independent variable. Such an expression (application of the independent variable to the diff or nthdiff of a lambda) is referred to as a derivative in this specification.
</para>
</listitem>
<listitem>
<para>
The evaluatedAt symbol MUST NOT be used, except as explicitly allowed in this specification.
</para>
</listitem>
<listitem>
<para>
The evaluatedAt operator MAY be used in an arbitrary number of expressions where the first argument is a reference to the independent variable, the second argument is a low complexity subset expression, and the third argument is a dependent variable, or an application of the diff or nthdiff symbol to a dependent variable. The second argument MUST evaluate to the same value each time this rule is relied upon. The term initial value expression SHALL refer to this form of expression.
</para>
</listitem>
<listitem>
<para>
The evaluatedAt operator MAY be applied as the child of a lambda element, where the first argument of the evaluatedAt operator is the independent variable, and the second is an application of the plus operator from arith1 with the first argument to plus being the independent variable, and the second being bound variable of the lambda element; however, the lambda application MUST be the third argument of a limit operator from limit1, with the first argument to the limit being a constant zero, and the second argument being the symbol below from limit1. Such expressions SHALL be referred to as infinitesimally delayed expressions within this specification.
</para>
</listitem>
<listitem>
<para>
An equation containing initial value expression MUST NOT involve the diff or nthdiff symbols from the calculus1 content dictionary other than within initial value expressions.
</para>
</listitem>
<listitem>
<para>
Where an initial value expression is used in a model, the model MUST also contain a top-level equation or top-level piecewise expression that involves the dependent variable or derivative (as the case may be) from the initial value expression, or which involves the first derivative of that dependent variable or derivative, but which does not contain any initial value expressions. Note: to avoid doubt, for the purposes of this rule, an initial value expression which involves the derivative of a dependent variable SHALL be taken to involve the derivative but to not involve the dependent variable.
</para>
</listitem>
<listitem>
<para>
Let n be the number of real variables in the model, and <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><msub><mi>k</mi> <mi>i</mi></msub></math> be the highest degree of differentiation found in the model for the ith real variable (<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><msub><mi>k</mi> <mi>i</mi></msub><mo>=</mo><mn>0</mn></math> if no derivatives are found). Let <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><msub><mi>d</mi> <mn>0</mn></msub><mo>=</mo><msubsup><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>n</mi></msubsup><mrow><msub><mi>k</mi> <mi>i</mi></msub></mrow></math>. Then the total number of real constraint equations in the model MUST equal <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><msub><mi>d</mi> <mn>0</mn></msub></math>.
</para>
</listitem>
<listitem>
<para>
Let t be the independent variable, <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><msub><mi>v</mi> <mi>i</mi></msub></math> be the ith variable, and <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><mi>S</mi><mo>=</mo><mo stretchy="false">{</mo><msub><mi>v</mi> <mn>1</mn></msub><mo>,</mo><mfrac><mrow><msub><mi>dv</mi> <mn>1</mn></msub></mrow><mi>dt</mi></mfrac><mo>,</mo><mfrac><mrow><msup><mi>d</mi> <mn>2</mn></msup><msub><mi>v</mi> <mn>1</mn></msub></mrow><mrow><msup><mi>dt</mi> <mn>2</mn></msup></mrow></mfrac><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mfrac><mrow><msup><mi>d</mi> <mrow><msub><mi>k</mi> <mn>1</mn></msub></mrow></msup><msub><mi>v</mi> <mn>1</mn></msub></mrow><mrow><msup><mi>dt</mi> <mrow><msub><mi>k</mi> <mn>1</mn></msub></mrow></msup></mrow></mfrac><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi> <mi>n</mi></msub><mo>,</mo><mfrac><mrow><msub><mi>dv</mi> <mi>n</mi></msub></mrow><mi>dt</mi></mfrac><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mfrac><mrow><msup><mi>d</mi> <mrow><msub><mi>k</mi> <mi>n</mi></msub></mrow></msup><msub><mi>v</mi> <mi>n</mi></msub></mrow><mrow><msup><mi>dt</mi> <mrow><msub><mi>k</mi> <mi>n</mi></msub></mrow></msup></mrow></mfrac><mo stretchy="false">}</mo></math>. There MUST NOT be any subset of the real constraint equations, of size greater than some i, but which collectively only involve i members of S (not counting references to members of S that occur inside infinitesimally delayed expressions)).
</para>
</listitem>
<listitem>
<para>
For every boolean variable in the model, there MUST be an eq relation with a reference to the boolean variable as the first argument, and an arbitrary boolean expression as the second argument.
</para>
</listitem>
<listitem>
<para>
There MUST be an ordering of boolean variables such that the expression for each boolean variable only uses boolean variables earlier in the ordering.
</para>
</listitem>
</orderedlist>
</section>
<section id="real-constraint-equations">
<title>Meaning of real constraint equations</title>
<para>
A top-level equality SHALL be real constraint equation if the two parts being equated are of type real.
</para>
<para>
A top-level piecewise SHALL be a real constraint equation.
</para>
<para>
No other expressions in the model SHALL be considered real constraint equations.
</para>
</section>
<section id="realequiv">
<title>OpenMath STS types equivalent to CellML type real</title>
<orderedlist>
<listitem>
<para>
For the purposes of this secondary specification, the following OpenMath STS types SHALL correspond to the CellML type real:
<orderedlist>
<listitem><para>OrderedSet</para></listitem>
<listitem><para>NumericalValue in the sts content dictionary</para></listitem>
<listitem><para>SemiGroup</para></listitem>
<listitem><para>AbelianSemiGroup</para></listitem>
<listitem><para>AbelianGroup</para></listitem>
<listitem><para>PositiveInteger</para></listitem>
<listitem><para>C in the setname1 content dictionary</para></listitem>
<listitem><para>R in the setname1 content dictionary</para></listitem>
<listitem><para>Z in the setname1 content dictionary</para></listitem>
<listitem><para>N in the setname1 content dictionary</para></listitem>
</orderedlist>
</para>
</listitem>
</orderedlist>
</section>
<section id="low-complexity-subset">
<title>Rules for low complexity subset expressions</title>
<para>
The following rules apply only to expressions that are required to be expressed in the low complexity subset:
<orderedlist>
<listitem>
<para>
Variables MUST NOT be referenced within a low complexity subset expression unless there is a top-level eq operator in the model equating that variable to a low complexity subset expression.
</para>
</listitem>
<listitem>
<para>
A low complexity subset expression which does not refer to any variables SHALL be defined to be a level 0 low complexity subset expression.
</para>
</listitem>
<listitem>
<para>
It MUST be possible to assign each low complexity subset expression a non-negative level i such that every low complexity subset expression only refers to variables that have been equated to a low complexity subset expression of a lower level.
</para>
</listitem>
<listitem>
<para>
Symbols from the calculus1 content dictionary MUST NOT be used within a low complexity subset expression.
</para>
</listitem>
<listitem>
<para>
The evaluatedAt symbol MUST NOT be used in a low complexity subset expression.
</para>
</listitem>
</orderedlist>
</para>
</section>
<section id="toplevel-piecewise-rules">
<title>Rules for top-level piecewise expressions</title>
<orderedlist>
<listitem>
<para>
Each top-level piecewise expression MUST have exactly two piece-boolean arguments.
</para>
</listitem>
<listitem>
<para>
Within the rules in this section, the value of a piece SHALL mean the only argument of an application of otherwise from the piece1 content dictionary, and the first argument of an application of piece from the piece1 content dictionary.
</para>
</listitem>
<listitem>
<para>
The value of each piece MUST consist of an application of the eq symbol from content dictionary relation1.
</para>
</listitem>
<listitem>
<para>
One piece MUST contain one or more instances of a derivative of exactly one dependent variable, such that the derivative (or any derivative of the same variable to a higher degree) does not appear anywhere else in the model (other than as a descendant of an evaluatedAt application), and the derivative to one degree less (the dependent variable itself in the case of first-order differentiation) appears in the other piece.
</para>
</listitem>
</orderedlist>
</section>
<section id="generalList">
<title>Generally Available List</title>
<para>
The Generally Available List of symbols is enumerated below, by naming the content dictionary, and then specifying which of symbols in the content dictionary that are on the Generally Available List:
<orderedlist>
<listitem><para>logic1 - all symbols in the logic1 content dictionary</para></listitem>
<listitem><para>piece1 - all symbols in the piece1 content dictionary</para></listitem>
<listitem><para>relation1 - all symbols in the relation1 content dictionary except approx</para></listitem>
<listitem><para>arith1 - all symbols in the arith1 content dictionary except product or sum</para></listitem>
<listitem><para>transc1 - all symbols in the transc1 content dictionary</para></listitem>
<listitem><para>rounding1 - all symbols in the rounding1 content dictionary</para></listitem>
<listitem><para>nums1 - the symbols e, gamma, and pi in the nums1 content dictionary</para></listitem>
<listitem><para>integer1 - all symbols in the integer1 content dictionary</para></listitem>
</orderedlist>
</para>
</section>
<section id="specificList">
<title>Specific Uses List</title>
<para>
The Specific Uses List of symbols is enumerated below, by naming the content dictionary, and then specifying which of symbols in the content dictionary that are on the Specific Uses List:
<orderedlist>
<listitem><para>limit1 - the symbols limit and below</para></listitem>
<listitem><para>calculus1 - the symbols defint, diff, and nthdiff</para></listitem>
<listitem><para>interval1 - the symbol oriented_interval</para></listitem>
<listitem><para>fns1 - the symbol lambda</para></listitem>
</orderedlist>
</para>
</section>
</section>