diff --git a/01 - Clean Images.ipynb b/01 - Clean Images.ipynb
index c81cbf41..6c8e5ff6 100644
--- a/01 - Clean Images.ipynb
+++ b/01 - Clean Images.ipynb
@@ -74,7 +74,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.18"
+ "version": "3.11.8"
}
},
"nbformat": 4,
diff --git a/02 - Image_Preparation.ipynb b/02 - Image_Preparation.ipynb
index 5e80137b..fe540e81 100644
--- a/02 - Image_Preparation.ipynb
+++ b/02 - Image_Preparation.ipynb
@@ -60,21 +60,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "0 data_raw_all\\0.0_0.0.jpg\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\Muell\\AppData\\Local\\Temp\\ipykernel_12520\\403455051.py:14: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.\n",
- " test_image = test_image.resize((target_size_x, target_size_y), Image.NEAREST)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "0 data_raw_all\\0.0_0.0.jpg\n",
"500 data_raw_all\\2.6_35a8c7850fdd0293ac7a2b8e7fa354b9.jpg\n",
"1000 data_raw_all\\5.4_main_ana3_20221213-134708.jpg\n",
"1500 data_raw_all\\8.5_4211_analog1_20200816-075704.jpg\n"
@@ -147,7 +133,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.18"
+ "version": "3.11.8"
},
"vscode": {
"interpreter": {
diff --git a/03 - Train_CNN_Analog-Readout_Version-Small2.ipynb b/03 - Train_CNN_Analog-Readout_Version-Small2.ipynb
index 2442244a..abd35f49 100644
--- a/03 - Train_CNN_Analog-Readout_Version-Small2.ipynb
+++ b/03 - Train_CNN_Analog-Readout_Version-Small2.ipynb
@@ -31,6 +31,8 @@
"\n",
"##########################################################################\n",
"\n",
+ "## 2024-03-30: Code adapted to TF 2.16####################################\n",
+ "\n",
"\n",
"\n",
"import os\n",
@@ -150,47 +152,123 @@
},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"model\"\n",
- "_________________________________________________________________\n",
- " Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- " input_1 (InputLayer) [(None, 32, 32, 3)] 0 \n",
- " \n",
- " batch_normalization (BatchN (None, 32, 32, 3) 12 \n",
- " ormalization) \n",
- " \n",
- " conv2d (Conv2D) (None, 32, 32, 32) 2432 \n",
- " \n",
- " max_pooling2d (MaxPooling2D (None, 8, 8, 32) 0 \n",
- " ) \n",
- " \n",
- " conv2d_1 (Conv2D) (None, 8, 8, 16) 12816 \n",
- " \n",
- " max_pooling2d_1 (MaxPooling (None, 4, 4, 16) 0 \n",
- " 2D) \n",
- " \n",
- " conv2d_2 (Conv2D) (None, 4, 4, 32) 4640 \n",
- " \n",
- " max_pooling2d_2 (MaxPooling (None, 2, 2, 32) 0 \n",
- " 2D) \n",
- " \n",
- " flatten (Flatten) (None, 128) 0 \n",
- " \n",
- " dense (Dense) (None, 128) 16512 \n",
- " \n",
- " dense_1 (Dense) (None, 64) 8256 \n",
- " \n",
- " dense_2 (Dense) (None, 2) 130 \n",
- " \n",
- "=================================================================\n",
- "Total params: 44,798\n",
- "Trainable params: 44,792\n",
- "Non-trainable params: 6\n",
- "_________________________________________________________________\n"
- ]
+ "data": {
+ "text/html": [
+ "
Model: \"functional_1\"\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1mModel: \"functional_1\"\u001b[0m\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+ "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
+ "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+ "│ input_layer (InputLayer) │ (None, 32, 32, 3) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ batch_normalization │ (None, 32, 32, 3) │ 12 │\n",
+ "│ (BatchNormalization) │ │ │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d (Conv2D) │ (None, 32, 32, 32) │ 2,432 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d (MaxPooling2D) │ (None, 8, 8, 32) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d_1 (Conv2D) │ (None, 8, 8, 16) │ 12,816 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d_1 (MaxPooling2D) │ (None, 4, 4, 16) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d_2 (Conv2D) │ (None, 4, 4, 32) │ 4,640 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d_2 (MaxPooling2D) │ (None, 2, 2, 32) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ flatten (Flatten) │ (None, 128) │ 0 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense (Dense) │ (None, 128) │ 16,512 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_1 (Dense) │ (None, 64) │ 8,256 │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_2 (Dense) │ (None, 2) │ 130 │\n",
+ "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+ "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
+ "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+ "│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m12\u001b[0m │\n",
+ "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m2,432\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m16\u001b[0m) │ \u001b[38;5;34m12,816\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m16\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m4,640\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m2\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m16,512\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │\n",
+ "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+ "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m) │ \u001b[38;5;34m130\u001b[0m │\n",
+ "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Total params: 44,798 (174.99 KB)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m44,798\u001b[0m (174.99 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Trainable params: 44,792 (174.97 KB)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m44,792\u001b[0m (174.97 KB)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Non-trainable params: 6 (24.00 B)\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m6\u001b[0m (24.00 B)\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
@@ -243,80 +321,81 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Epoch 1/30\n"
+ "Epoch 1/30\n",
+ "\u001b[1m 41/218\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.5233 - loss: 0.5301"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "C:\\Users\\Muell\\AppData\\Local\\Temp\\ipykernel_6032\\3831122756.py:11: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.\n",
- " history = model.fit_generator(train_iterator, validation_data = validation_iterator, epochs = Epoch_Anz)\n"
+ "C:\\Users\\Muell\\anaconda3\\envs\\py311-tf216-opencv\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:120: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n",
+ " self._warn_if_super_not_called()\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "218/218 [==============================] - 2s 6ms/step - loss: 0.4270 - accuracy: 0.6297 - val_loss: 0.2545 - val_accuracy: 0.7816\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 4ms/step - accuracy: 0.5383 - loss: 0.5049 - val_accuracy: 0.6897 - val_loss: 0.3257\n",
"Epoch 2/30\n",
- "218/218 [==============================] - 1s 6ms/step - loss: 0.1868 - accuracy: 0.8562 - val_loss: 0.1160 - val_accuracy: 0.8966\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7489 - loss: 0.2985 - val_accuracy: 0.8966 - val_loss: 0.1359\n",
"Epoch 3/30\n",
- "218/218 [==============================] - 2s 7ms/step - loss: 0.0925 - accuracy: 0.9183 - val_loss: 0.0570 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.8915 - loss: 0.1226 - val_accuracy: 0.9080 - val_loss: 0.0622\n",
"Epoch 4/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0598 - accuracy: 0.9425 - val_loss: 0.0403 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9096 - loss: 0.0742 - val_accuracy: 0.9425 - val_loss: 0.0622\n",
"Epoch 5/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0427 - accuracy: 0.9511 - val_loss: 0.0596 - val_accuracy: 0.9310\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9418 - loss: 0.0473 - val_accuracy: 0.9540 - val_loss: 0.0217\n",
"Epoch 6/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0325 - accuracy: 0.9494 - val_loss: 0.0203 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9489 - loss: 0.0374 - val_accuracy: 0.9540 - val_loss: 0.0322\n",
"Epoch 7/30\n",
- "218/218 [==============================] - 2s 8ms/step - loss: 0.0256 - accuracy: 0.9528 - val_loss: 0.0172 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9555 - loss: 0.0240 - val_accuracy: 0.8966 - val_loss: 0.0922\n",
"Epoch 8/30\n",
- "218/218 [==============================] - 2s 8ms/step - loss: 0.0234 - accuracy: 0.9551 - val_loss: 0.0212 - val_accuracy: 0.9655\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9425 - loss: 0.0249 - val_accuracy: 0.9655 - val_loss: 0.0129\n",
"Epoch 9/30\n",
- "218/218 [==============================] - 2s 8ms/step - loss: 0.0180 - accuracy: 0.9695 - val_loss: 0.0108 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9738 - loss: 0.0149 - val_accuracy: 0.9540 - val_loss: 0.0141\n",
"Epoch 10/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0169 - accuracy: 0.9666 - val_loss: 0.0296 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9691 - loss: 0.0136 - val_accuracy: 0.9655 - val_loss: 0.0082\n",
"Epoch 11/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0151 - accuracy: 0.9724 - val_loss: 0.0133 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9582 - loss: 0.0120 - val_accuracy: 0.9655 - val_loss: 0.0170\n",
"Epoch 12/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0137 - accuracy: 0.9666 - val_loss: 0.0139 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9724 - loss: 0.0128 - val_accuracy: 0.9655 - val_loss: 0.0102\n",
"Epoch 13/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0119 - accuracy: 0.9707 - val_loss: 0.0148 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9818 - loss: 0.0092 - val_accuracy: 0.9655 - val_loss: 0.0081\n",
"Epoch 14/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0100 - accuracy: 0.9718 - val_loss: 0.0121 - val_accuracy: 1.0000\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9732 - loss: 0.0078 - val_accuracy: 0.9885 - val_loss: 0.0061\n",
"Epoch 15/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0101 - accuracy: 0.9689 - val_loss: 0.0098 - val_accuracy: 1.0000\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9774 - loss: 0.0094 - val_accuracy: 0.9770 - val_loss: 0.0093\n",
"Epoch 16/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0100 - accuracy: 0.9707 - val_loss: 0.0128 - val_accuracy: 0.9655\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9802 - loss: 0.0069 - val_accuracy: 0.9655 - val_loss: 0.0125\n",
"Epoch 17/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0090 - accuracy: 0.9758 - val_loss: 0.0069 - val_accuracy: 1.0000\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9826 - loss: 0.0073 - val_accuracy: 0.9885 - val_loss: 0.0052\n",
"Epoch 18/30\n",
- "218/218 [==============================] - 2s 11ms/step - loss: 0.0082 - accuracy: 0.9776 - val_loss: 0.0047 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9811 - loss: 0.0050 - val_accuracy: 0.9770 - val_loss: 0.0078\n",
"Epoch 19/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0076 - accuracy: 0.9770 - val_loss: 0.0070 - val_accuracy: 1.0000\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0056 - val_accuracy: 0.9885 - val_loss: 0.0068\n",
"Epoch 20/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0077 - accuracy: 0.9770 - val_loss: 0.0062 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9776 - loss: 0.0054 - val_accuracy: 0.9885 - val_loss: 0.0051\n",
"Epoch 21/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0066 - accuracy: 0.9799 - val_loss: 0.0061 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9744 - loss: 0.0057 - val_accuracy: 0.9770 - val_loss: 0.0094\n",
"Epoch 22/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0075 - accuracy: 0.9804 - val_loss: 0.0046 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9875 - loss: 0.0043 - val_accuracy: 0.9770 - val_loss: 0.0031\n",
"Epoch 23/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0058 - accuracy: 0.9793 - val_loss: 0.0060 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9808 - loss: 0.0050 - val_accuracy: 0.9885 - val_loss: 0.0057\n",
"Epoch 24/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0066 - accuracy: 0.9799 - val_loss: 0.0038 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9806 - loss: 0.0038 - val_accuracy: 0.9655 - val_loss: 0.0025\n",
"Epoch 25/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0051 - accuracy: 0.9776 - val_loss: 0.0049 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9875 - loss: 0.0037 - val_accuracy: 0.9770 - val_loss: 0.0047\n",
"Epoch 26/30\n",
- "218/218 [==============================] - 2s 10ms/step - loss: 0.0063 - accuracy: 0.9770 - val_loss: 0.0037 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9866 - loss: 0.0038 - val_accuracy: 0.9770 - val_loss: 0.0028\n",
"Epoch 27/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0047 - accuracy: 0.9816 - val_loss: 0.0053 - val_accuracy: 0.9770\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9822 - loss: 0.0036 - val_accuracy: 0.9770 - val_loss: 0.0029\n",
"Epoch 28/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0046 - accuracy: 0.9799 - val_loss: 0.0046 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9846 - loss: 0.0039 - val_accuracy: 1.0000 - val_loss: 0.0034\n",
"Epoch 29/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0047 - accuracy: 0.9827 - val_loss: 0.0073 - val_accuracy: 0.9885\n",
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9833 - loss: 0.0033 - val_accuracy: 1.0000 - val_loss: 0.0037\n",
"Epoch 30/30\n",
- "218/218 [==============================] - 2s 9ms/step - loss: 0.0050 - accuracy: 0.9793 - val_loss: 0.0030 - val_accuracy: 0.9885\n"
+ "\u001b[1m218/218\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 4ms/step - accuracy: 0.9810 - loss: 0.0036 - val_accuracy: 1.0000 - val_loss: 0.0030\n"
]
}
],
@@ -331,10 +410,10 @@
"if (Training_Percentage > 0):\n",
" train_iterator = datagen.flow(x_data, y_data, batch_size=Batch_Size)\n",
" validation_iterator = datagen.flow(X_test, y_test, batch_size=Batch_Size)\n",
- " history = model.fit_generator(train_iterator, validation_data = validation_iterator, epochs = Epoch_Anz)\n",
+ " history = model.fit(train_iterator, validation_data = validation_iterator, epochs = Epoch_Anz)\n",
"else:\n",
" train_iterator = datagen.flow(x_data, y_data, batch_size=Batch_Size)\n",
- " history = model.fit_generator(train_iterator, epochs = Epoch_Anz)\n",
+ " history = model.fit(train_iterator, epochs = Epoch_Anz)\n",
"\n"
]
},
@@ -354,7 +433,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3GElEQVR4nO3dd3xT9f7H8VeSNt2D0kILLbPsUfZGpoIiuLdecIu4f17ndXvFfV1VcOLALSqKCIIMQfbeUFbZZXXTlZzfH6ctVErpSJu0fT8fjzyaJifnfBKjffudFsMwDERERERqMau7CxARERFxNwUiERERqfUUiERERKTWUyASERGRWk+BSERERGo9BSIRERGp9RSIREREpNZTIBIREZFaT4FIREREaj0FIhGpUXbt2oXFYmHSpEllfu3cuXOxWCzMnTu3xOMmTZqExWJh165d5apRRDyPApGIiIjUegpEIiIiUuspEImIiEitp0AkIi719NNPY7FY2Lp1K9dffz0hISFERETwxBNPYBgGe/bs4aKLLiI4OJjIyEhee+21086RlJTEzTffTP369fH19SUuLo5PP/30tOOSk5MZM2YMISEhhIaGMnr0aJKTk4uta/PmzVx++eWEhYXh6+tLt27dmDp1qkvf+7vvvku7du3w8fGhQYMGjBs37rR6tm3bxmWXXUZkZCS+vr5ER0dz9dVXk5KSUnjMH3/8Qb9+/QgNDSUwMJBWrVrx2GOPubRWESnKy90FiEjNdNVVV9GmTRtefPFFpk2bxvPPP09YWBgTJ05k8ODBvPTSS0yePJkHH3yQ7t27c8455wBw4sQJBg4cSEJCAnfddRdNmzblu+++Y8yYMSQnJ3PvvfcCYBgGF110EQsWLOCOO+6gTZs2/Pjjj4wePfq0WjZs2EDfvn1p2LAhjzzyCAEBAXz77bdcfPHF/PDDD1xyySUVfr9PP/00zzzzDEOHDmXs2LFs2bKF9957j2XLlrFw4UK8vb3Jyclh2LBhZGdnc/fddxMZGcm+ffv49ddfSU5OJiQkhA0bNnDhhRfSsWNHnn32WXx8fEhISGDhwoUVrlFESmCIiLjQU089ZQDGbbfdVvhYXl6eER0dbVgsFuPFF18sfPz48eOGn5+fMXr06MLH3njjDQMwvvjii8LHcnJyjN69exuBgYFGamqqYRiG8dNPPxmA8fLLLxe5Tv/+/Q3A+OSTTwofHzJkiNGhQwcjKyur8DGn02n06dPHaNGiReFjc+bMMQBjzpw5Jb7HTz75xACMnTt3GoZhGElJSYbdbjfOO+88w+FwFB73zjvvGIDx8ccfG4ZhGKtWrTIA47vvvjvjuf/3v/8ZgHH48OESaxAR11KXmYhUiltuuaXwvs1mo1u3bhiGwc0331z4eGhoKK1atWLHjh2Fj/32229ERkZyzTXXFD7m7e3NPffcQ3p6OvPmzSs8zsvLi7Fjxxa5zt13312kjmPHjvHnn39y5ZVXkpaWxpEjRzhy5AhHjx5l2LBhbNu2jX379lXovc6aNYucnBzuu+8+rNaT/1m99dZbCQ4OZtq0aQCEhIQAMGPGDDIzM4s9V2hoKAA///wzTqezQnWJSOkpEIlIpWjUqFGR30NCQvD19SU8PPy0x48fP174++7du2nRokWRYAHQpk2bwucLfkZFRREYGFjkuFatWhX5PSEhAcMweOKJJ4iIiChye+qppwBzzFJFFNT0z2vb7XaaNWtW+HzTpk154IEH+PDDDwkPD2fYsGHEx8cXGT901VVX0bdvX2655Rbq16/P1VdfzbfffqtwJFLJNIZIRCqFzWYr1WNgjgeqLAVB4sEHH2TYsGHFHhMbG1tp1/+n1157jTFjxvDzzz8zc+ZM7rnnHsaPH8/ixYuJjo7Gz8+P+fPnM2fOHKZNm8bvv//ON998w+DBg5k5c+YZP0MRqRi1EImIR2ncuDHbtm07rUVk8+bNhc8X/Dxw4ADp6elFjtuyZUuR35s1awaY3W5Dhw4t9hYUFFThmou7dk5ODjt37ix8vkCHDh34z3/+w/z58/nrr7/Yt28fEyZMKHzearUyZMgQXn/9dTZu3Mh///tf/vzzT+bMmVOhOkXkzBSIRMSjXHDBBRw8eJBvvvmm8LG8vDzefvttAgMDGTBgQOFxeXl5vPfee4XHORwO3n777SLnq1evHgMHDmTixIkcOHDgtOsdPny4wjUPHToUu93OW2+9VaS166OPPiIlJYURI0YAkJqaSl5eXpHXdujQAavVSnZ2NmCOefqnTp06ARQeIyKupy4zEfEot912GxMnTmTMmDGsWLGCJk2a8P3337Nw4ULeeOONwtackSNH0rdvXx555BF27dpF27ZtmTJlSpHxOAXi4+Pp168fHTp04NZbb6VZs2YcOnSIRYsWsXfvXtasWVOhmiMiInj00Ud55plnGD58OKNGjWLLli28++67dO/eneuvvx6AP//8k7vuuosrrriCli1bkpeXx+eff47NZuOyyy4D4Nlnn2X+/PmMGDGCxo0bk5SUxLvvvkt0dDT9+vWrUJ0icmYKRCLiUfz8/Jg7dy6PPPIIn376KampqbRq1YpPPvmEMWPGFB5ntVqZOnUq9913H1988QUWi4VRo0bx2muv0blz5yLnbNu2LcuXL+eZZ55h0qRJHD16lHr16tG5c2eefPJJl9T99NNPExERwTvvvMP9999PWFgYt912Gy+88ALe3t4AxMXFMWzYMH755Rf27duHv78/cXFxTJ8+nV69egEwatQodu3axccff8yRI0cIDw9nwIABPPPMM4Wz1ETE9SxGZY5mFBEREakGNIZIREREaj0FIhEREan1FIhERESk1lMgEhERkVpPgUhERERqPQUiERERqfW0DlEJnE4n+/fvJygoCIvF4u5yREREpBQMwyAtLY0GDRqctlH0mSgQlWD//v3ExMS4uwwREREphz179hAdHV2qYxWISlCwRcCePXsIDg52czUiIiJSGqmpqcTExJRp42YFohIUdJMFBwcrEImIiFQzZRnuokHVIiIiUuspEImIiEitp0AkIiIitZ7GEBUjPj6e+Ph4HA5HqY53OBzk5uZWclU1k7e3Nzabzd1liIhILWcxDMNwdxGeKjU1lZCQEFJSUoodVG0YBgcPHiQ5Obnqi6tBQkNDiYyM1FpPIiLiEmf7+10ctRBVQEEYqlevHv7+/vqDXkaGYZCZmUlSUhIAUVFRbq5IRERqKwWicnI4HIVhqG7duu4up9ry8/MDICkpiXr16qn7TERE3EKDqsupYMyQv7+/myup/go+Q43DEhERd1EgqiB1k1WcPkMREXE3BSIRERGp9RSIpEKaNGnCG2+84e4yREREKkSDqmuhgQMH0qlTJ5cEmWXLlhEQEFDxokRERNxIgchdnA7IywK754UJwzBwOBx4eZ396xEREVEFFYmIiFQudZm5Q14WHFwHRxPAcFbppceMGcO8efN48803sVgsWCwWJk2ahMViYfr06XTt2hUfHx8WLFjA9u3bueiii6hfvz6BgYF0796dWbNmFTnfP7vMLBYLH374IZdccgn+/v60aNGCqVOnVul7FBERKSsFIhcyDIPMnLyz3xw2Mh0W8356aulec5ZbaRccf/PNN+nduze33norBw4c4MCBA8TExADwyCOP8OKLL7Jp0yY6duxIeno6F1xwAbNnz2bVqlUMHz6ckSNHkpiYWOI1nnnmGa688krWrl3LBRdcwHXXXcexY8cq/PmKiIhUFnWZudCJXAdtn5xRxlcddMm1Nz47DH/72f9xhoSEYLfb8ff3JzIyEoDNmzcD8Oyzz3LuuecWHhsWFkZcXFzh78899xw//vgjU6dO5a677jrjNcaMGcM111wDwAsvvMBbb73F0qVLGT58eLnem4iISGVTC5EU6tatW5Hf09PTefDBB2nTpg2hoaEEBgayadOms7YQdezYsfB+QEAAwcHBhdtziIiIeCK1ELmQn7eNjc8OK93BjlxI2mjer9cWbN4VvnZF/XO22IMPPsgff/zBq6++SmxsLH5+flx++eXk5OSUeB5v76LvxWKx4HRW7VgpERGRslAgKkZ8fDzx8fE4HI4yvc5isZSq28rkBX4BkHcCjBNg9yt7oeVkt9tL9d4WLlzImDFjuOSSSwCzxWjXrl2VXJ2IiEjVU5dZMcaNG8fGjRtZtmxZ5V7IN8j8mZ1Wudf5hyZNmrBkyRJ27drFkSNHzth606JFC6ZMmcLq1atZs2YN1157rVp6RESkRlIgciefYPNndiqUcpaYKzz44IPYbDbatm1LRETEGccEvf7669SpU4c+ffowcuRIhg0bRpcuXaqsThERkapiMUo7X7sWSk1NJSQkhJSUFIKDg4s8l5WVxc6dO2natCm+vr7lu4DhNNcjMpwQ0Qq8/V1QdfXjks9SREQkX0l/v89ELUTuZLGCPdC8n1W13WYiIiJykgKRu53abSYiIiJuoUDkbj75A6tzMsz9zURERKTKKRC5m5cP2OyAATnp7q5GRESkVlIgcjeL5WQrURVPvxcRERGTApEnKBhHlKVxRCIiIu6gQOQJfPJnmjmyIS/bvbWIiIjUQgpEnsDqBd75+4ip20xERKTKKRB5Cl9NvxcREXEXBSJPUTiwOr1Kt/GoLJMmTSI0NNTdZYiIiJSKApGn8PYHiw0Mh7kmkYiIiFQZBSJPoen3IiIibqNA5EmqcBsPp9PJ+PHjadq0KX5+fsTFxfH999/jdDqJjo7mvffeK3L8qlWrsFqt7N69G4DXX3+dDh06EBAQQExMDHfeeSfp6VpYUkREqicvdxdQoxgG5GaW//UWK+SeMG8nUsBWhn883v5mK1MpjR8/ni+++IIJEybQokUL5s+fz/XXX8+MGTO45ppr+PLLLxk7dmzh8ZMnT6Zv3740btwYAKvVyltvvUXTpk3ZsWMHd955Jw899BDvvvtu6WsWERHxEApErpSbCS80cM+1H9sP9oBSHZqdnc0LL7zArFmz6N27NwDNmjVjwYIFTJw4kYceeojXXnuNxMREGjVqhNPp5Ouvv+Y///lP4Tnuu+++wvtNmjTh+eef54477lAgEhGRakmBqBZKSEggMzOTc889t8jjOTk5dO7cmU6dOtGmTRu+/PJLHnnkEebNm0dSUhJXXHFF4bGzZs1i/PjxbN68mdTUVPLy8sjKyiIzMxN/f/+qfksiIiIVokBUjPj4eOLj43E4yrj7vLe/2VJTEVlpcHwHWL2hXpvSd4N5lz6EFIz1mTZtGg0bNizynI+PDwDXXXddYSD68ssvGT58OHXr1gVg165dXHjhhYwdO5b//ve/hIWFsWDBAm6++WZycnIUiEREpNpRICrGuHHjGDduHKmpqYSEhJT+hRZLqbutzsjLD9IPAgZYbeDtV7HzFaNt27b4+PiQmJjIgAEDij3m2muv5T//+Q8rVqzg+++/Z8KECYXPrVixAqfTyWuvvYbVao7L//bbb11ep4iISFVRIPI0Vqu5t1l2mnmrhEAUFBTEgw8+yP3334/T6aRfv36kpKSwcOFCgoODGT16NE2aNKFPnz7cfPPNOBwORo0aVfj62NhYcnNzefvttxk5ciQLFy4sEphERESqG02790SF6xFV3vT75557jieeeILx48fTpk0bhg8fzrRp02jatGnhMddddx1r1qzhkksuwc/vZDCLi4vj9ddf56WXXqJ9+/ZMnjyZ8ePHV1qtIiIilc1iGDVgn4hKUtBllpKSQnBwcJHnsrKy2LlzJ02bNsXX19e1F849AYc3AxaI7Gi2GtVglfpZiohIrVPS3+8zqdl/aasrL19zUDUG5GixQxERkcqmQOSJtI2HiIhIlVIg8lS+VbeNh4iISG2nQOSp7PktRHlZ4Mhxby0iIiI1nAJRBVVkTHqew3nmJ21eJxdbrOHdZhrXLyIi7qZAVE7e3t4AZGaWfTPX7DwHWw6msfVQeslhoGAcUVbNDkQFn2HBZyoiIlLVtDBjOdlsNkJDQ0lKSgLA398fSym32XAaBjnZWTgNg+Q0K372M/1j8IE8A9JTwO9EmXazrw4MwyAzM5OkpCRCQ0Ox2WzuLklERGopBaIKiIyMBCgMRWWRkp7DiVwHWce8CPY7Q8uIYUDqUTCckAJ42StQrecKDQ0t/CxFRETcQYGoAiwWC1FRUdSrV4/c3NwyvXbzugO8OmcLreoH8e71Xc984LR3Yedc6DEWetxcsYI9kLe3t1qGRETE7RSIXMBms5X5j3rfVlHc/8NG9qUlk5ZrISLIp/gDG3WGdZ9Dwi9wzjgXVCsiIiL/pEHVblIv2Jf2Dc21huZtPXzmA2OHmD/3LIWslCqoTEREpPZRIHKjwa3qATBncwljkOo0gbDmYDhg519VU5iIiEgto0DkRgNbm4Fo/rbD5Ja0JlFBK9H22VVQlYiISO2jQORGcdGhhAXYScvKY8Xu42c+sHl+IEqYbc48ExEREZdSIHIjm9XCgJYRAMzZUkK3WZN+YPWG5N1wbEcVVSciIlJ7KBC52aDWpRhH5BMIjXqZ9xPUbSYiIuJqCkRudk6LcKwW2Hoonb3HS9gGpPlg8+f2P6umMBERkVpEgcjNQv3tdG1cB4A5W0ox/X7XX5CXUwWViYiI1B4KRB5gYP70+7kldZvV7wABEZCTDnuWVFFlIiIitYMCkQcYnD+OaOH2I2TlOoo/yGo9pdtM44hERERcSYHIA7SODCIqxJesXCeLdxw984EFgUgDq0VERFxKgcgDWCyWwm6zEmebFQSig2shvYTjREREpEwUiIoRHx9P27Zt6d69e5Vds6DbbM6WwxhnWnwxsB5EdjDv75hbNYWJiIjUAgpExRg3bhwbN25k2bJlVXbNPs3rYrdZSTyWyfbDGWc+8NRVq0VERMQlFIg8RICPFz2bhQFn6TYr3NfsT3CWsP+ZiIiIlJoCkQcZVDCOqKRtPGJ6grc/ZCTBofVVVJmIiEjNpkDkQQrGES3deYy0rNziD/LygSb9zfuafi8iIuISCkQepEl4AE3DA8hzGixMOHLmA1uca/7c/FvVFCYiIlLDKRB5mIJusz9LGkfUeoT5c+9SSN1fBVWJiIjUbApEHmZQ6wjgLNPvgxuYY4kANv1aRZWJiIjUXApEHqZH0zD87TYOp2WzYX/qmQ9sM8r8ufHnqilMRESkBlMg8jA+Xjb6xoYDZ5l+32ak+TPxb0g/XAWViYiI1FwKRB6oYLbZnyVNv6/TGKI6geGEzeo2ExERqQgFIg80sJU5jmj1nmSOZeSc+cC2F5k/N02tgqpERERqLgUiDxQV4kebqGAMA+ZtLaGVqCAQ7ZwPmceqpjgREZEaSIHIQw3KbyWas7mE8UF1m0O9duDMgy3Tq6gyERGRmkeByEMVjCOat/UweY4S9ixrmz/bTN1mIiIi5aZA5KE6xYQS4udNyolcVu9JPvOBBd1m2/+ErBKm6YuIiMgZKRB5KC+blQEtzW6zEletjmgNdVuAIwe2zqii6kRERGoWBSIPduqq1WdksZzSbaZFGkVERMpDgciDDWhZD4sFNh1I5UDKiTMfWNBttm0W5GRUTXEiIiI1iAKRBwsLsNM5JhSAuSW1EkV2hNDGkHcCEmZVTXEiIiI1iAKRhxvUKn/V6pLGEZ3abaa9zURERMpMgcjDDcqffr8w4QjZeY4zH9gmv9ts6wzIzaqCykRERGoOBSIP165BMPWCfMjMcbB0ZwmrUTfsCsENIScddsypugJFRERqAAUiD2exWErXbWa1QpuR5v2NWqRRRESkLBSIqoGC6fclDqwGaJM/jmjLNMgrYVNYERERKUKBqBroGxuOt83CziMZ7DxSwrT6Rr0gIAKyUmDX/KorUEREpJpTIKoGgny96d4kDIA5JXab2dRtJiIiUg4KRNVEwWavc7aUEIjgZLfZ5mngyKvkqkRERGoGBaJqYmD+wOolO46RkV1C0GnSD/zqQOYRSPy7iqoTERGp3hSIqonmEQE0CvMnx+FkYcKRMx9o84ZWI8z76jYTEREpFQWiasKcfl+KzV7h5N5mm34Bp7OSKxMREan+FIiqkYJVq+duScIwjDMf2GwA+ARD+kHYu7SKqhMREam+FIiqkV7N6uLrbeVAShabD6ad+UAvH2g53LyvbjMREZGzUiCqRny9bfRtHg6cZdVqKNptVlJrkoiIiCgQVTcDT+k2K1HsEPAOgJRE2L+qCioTERGpvhSIqpmCgdUrdh8nObOE7Tm8/aDFueb9jT9XQWUiIiLVlwJRNRNdx5+W9QNxGjB/WwnT7wHa5i/SuGmqus1ERERKoEBUDRXMNpu18VDJB7Y4D7x84dgOOLShCioTERGpnhSIqqHz2kYC5r5m2XmOMx/oEwTNh5j3N2m2mYiIyJkoEFVDnWNCqR/sQ1p2Hn8nHC354IJuM40jEhEROSMFomrIarUwrJ3ZSvT7+oMlH9xyOFi94fBmOLy1CqoTERGpfhSIqqnh+YFo5saD5DlK2J7DLxSaDTTvb1IrkYiISHFqRSC65JJLqFOnDpdffrm7S3GZHk3DqOPvzfHMXJbuOlbywYXdZhpHJCIiUpxaEYjuvfdePvvsM3eX4VJeNivntq0PlKLbrNUIsNjg4Fo4trMKqhMREaleakUgGjhwIEFBQe4uw+XObx8FwIwNB3E6S1hnKKAuNOln3tdsMxERkdO4PRDNnz+fkSNH0qBBAywWCz/99NNpx8THx9OkSRN8fX3p2bMnS5dqB3eAPrF1CfTx4lBqNqv2JJd8sLrNREREzsjtgSgjI4O4uDji4+OLff6bb77hgQce4KmnnmLlypXExcUxbNgwkpJO7uXVqVMn2rdvf9pt//79VfU23MLHy8bg/EUaZ2w4S7dZ65GABfYth5S9lV+ciIhINeLl7gLOP/98zj///DM+//rrr3Prrbdy4403AjBhwgSmTZvGxx9/zCOPPALA6tWrXVJLdnY22dnZhb+npqa65LyV6fz2kUxds5/p6w/w6PmtsVgsxR8YVB8a9YLERbDpF+g1tmoLFRER8WBubyEqSU5ODitWrGDo0KGFj1mtVoYOHcqiRYtcfr3x48cTEhJSeIuJiXH5NVxtQKsIfL2t7Dl2go0HzhLg2l5k/lS3mYiISBEeHYiOHDmCw+Ggfv36RR6vX78+Bw+epYvoFEOHDuWKK67gt99+Izo6+oxh6tFHHyUlJaXwtmfPngrVXxX87V4MaBkBwIyzzTZrM9L8mbgI0s6yD5qIiEgt4tGByFVmzZrF4cOHyczMZO/evfTu3bvY43x8fAgODi5yqw6GtzcXaZx+tkAUEg0NuwIGbP618gsTERGpJjw6EIWHh2Oz2Th0qGhrxqFDh4iMjHRTVZ5ncOv6eNssbEtKJyEpveSD22hvMxERkX/y6EBkt9vp2rUrs2fPLnzM6XQye/bsM7by1EYhft70aR4OlGK2WcH0+10LIPVAJVcmIiJSPbg9EKWnp7N69erCmWI7d+5k9erVJCYmAvDAAw/wwQcf8Omnn7Jp0ybGjh1LRkZG4awzMZ3fvpSbvYY1g5heYDjgr9eqoDIRERHP5/ZAtHz5cjp37kznzp0BMwB17tyZJ598EoCrrrqKV199lSeffJJOnTqxevVqfv/999MGWtd2Q9vWx2qBdftS2HMss+SDBz9u/lwxCY7vquzSREREPJ7FMIwS9nyoneLj44mPj8fhcLB161ZSUlKqxQDrqyYuYsnOY/xnRBtu6d+s5IM/uxh2zIG4a+CSCVVSn4iISFVITU0lJCSkTH+/3d5C5InGjRvHxo0bWbZsmbtLKZOCbrOzjiMCGPKE+XPN15C0qRKrEhER8XwKRDXIsPxAtHz3cZLSsko+uGFXaH0hYMCc/1Z+cSIiIh5MgagGiQrxo1NMKIYBMzeUYuHFwU8AFnMrj30rKr0+ERERT6VAVMMML+1sM4B6rSHuavP+7OcqsSoRERHPpkBUwwxvZwaiRTuOkpyZc/YXDHwErN7mAOud8yu5OhEREc+kQFTDNAkPoHVkEA6nwR8bS9FtVqcJdB1j3p/9LGjSoYiI1EIKRDXQ+e2jgFLONgM450Hw8oO9y2Dr75VYmYiIiGdSICpGfHw8bdu2pXv37u4upVwKxhHN33aE9Oy8s78gKBJ63WHen/0cOJ2VWJ2IiIjnUSAqRnVdh6hAy/qBNA0PICfPyZzNSaV7UZ97wCcEkjbA+h8qt0AREREPo0BUA1kslpOzzUrbbeYfBn3vNu/P+S84ciupOhEREc+jQFRDFcw2m7M5iaxcR+le1HMsBETA8Z2w6vNKrE5ERMSzKBDVUB2jQ2gQ4ktmjoO/th0p3Yt8AqH/g+b9eS9D7onKK1BERMSDKBDVUBaLpXArj+nrD5T+hd1uhJAYSDsASz+opOpEREQ8iwJRDVYw/X7WxkPkOko5c8zLx1ysEWDB65CVWknViYiIeA4Fohqsa+M6hAfaSc3KY/GOo6V/YcerIbwlnDgOi+Irr0AREREPoUBUg9msFs5rV9BtVsrZZgA2Lxj0uHl/0TuQUcoxSCIiItWUAlExqvvCjKcqmG02c8MhHM4ybMvRZhRExUFOOiz4XyVVJyIi4hkUiIpR3RdmPFWvZnUJ9vXiSHo2K3YfL/0LrVYY/KR5f+kHkLKvcgoUERHxAApENZzdy8rQtvUB+L0s3WYAsUOgcV9wZMO8lyqhOhEREc+gQFQLFHSbzdhwEKMsu9lbLDAkv5Vo1RdwdHslVCciIuJ+CkS1wDktI/C329iXfIJ1+1LK9uJGvaDFMDAc5pYeIiIiNZACUS3g621jUKt6QDm6zQAG/8f8uf4HOLjOhZWJiIh4BgWiWqJws9f1Zew2A4jqCO0uNe//+byLKxMREXE/BaJaYlDreti9rOw4ksG2pPRynOBxsNhg6++QuNj1BYqIiLiRAlEtEejjxTktwgGYvq4c3WbhsdD5OvP+7GehrK1MIiIiHkyBqBYZlj/b7PcN5QhEAAMeBpsP7F4I2/8s1ykysvPYezyzfNcXERGpJApExahJK1Wfamib+tisFjYdSGX30YyynyAkGrrfYt6f/jDknijTy/McTq5+fzGDXp3LjsPl6LYTERGpJApExahJK1Wfqk6And7N6gLlnG0GcM6DEBgJR7fB7OfK9NLJSxJZty+FXIfBwgTtjyYiIp5DgaiWGda+gt1m/mEw6i3z/uJ3YdeCUr3sWEYOr83cUvj76j1lXA9JRESkEikQ1TLD2tbHYoFVicls3J9avpO0HAadbwAM+OlOyE4760tem7mF1Kw8/O02ANbsTS7ftUVERCqBAlEtUy/Yl/PzW4ke+mENeQ5n+U407AUIiYHk3TDziRIP3bA/hS+XJgLw2hVxAGw/nE5qVm75ri0iIuJiCkS10NOj2hHi5836falMnL+jfCfxDYaL4s37Kz6BhFnFHmYYBs9M3YhhwIUdozi/QxQxYX4YBqzbq24zERHxDApEtVC9IF+eGtkWgDdnbSMh6exdXsVqNgB63G7e//luOHH8tEN+WXuApbuO4ett5bEL2gAQFx0KwOo9yeW7roiIiIspENVSl3RuyKBWEeQ4nPz7+7U4nOVcaHHo0xDWHNL2w/RHijyVmZPHC9M2AXDnwFgahPoB0CkmFFAgEhERz6FAVEtZLBZeuLQDQT5erEpM5pOFO8t3Irs/XPweWKyw9mvY9EvhU+/N3c7B1Cyi6/hx2znNCh8/NRCVeV81ERGRSqBAVItFhfjx+AizG+uVGVvYeaQcizUCNOoJfe4x7/9yH2QcIfFoZuH4pP+MaIOvt63w8HYNQrBZLRxOy+ZgalZF3oKIiIhLKBDVcld1j6FfbDjZeU4e/n4tzvJ2nQ16DCLaQOYR+PU+/jttAzl5TvrG1i3cMqSAn91Gq/pBAKxRt5mIiHgABaJazmKxMP7SDvjbbSzddYzPF+8u34m8fOCSCWD1gk2/4LP5R2xWC0+NbIfFYjnt8E6NQgFYpUAkIiIeQIFIiAnz59HzWwPw0u+b2XOsnJuvNuiEo/+/AXjO+xPu7OJPy/yWoH/qlD/TTC1EIiLiCRSIilFTN3ctyXU9G9OzaRiZOQ4embK23IOdP7NdylpnU0IsmdyT+Tac4Txx+QOr1+1NKf8MNxERERdRICpGTd3ctSRWq4WXLuuIr7eVhQlH+WrpnjKf42h6Nq//uZP/yx2Lw2rHe8csWPlZscfG1gskwG4jI8dBQlJ6RcsXERGpEAUiKdQkPIAHz2sFwAu/bWJ/8okyvf7VmVtIy8rDHtUWy+D87TxmPAbHTx+XZLNa6BAdAqjbTERE3E+BSIq4sW9TujQKJT07j0enrCt119n6fSl8vcxsVXp6VDusfcZBTC/ISYefx4Hz9D3TCrrNVmujVxERcTMFIinCZrXw8uVx2L2szNt6mB9W7jvrawzD4OmpGzAMGBXXgO5NwsBqg4vfBW9/2PUXLH3/tNdpYLWIiHgKBSI5TWy9QO4f2hKAZ3/ZwKGzLJ44dc1+lu8+jp+3jUcvaH3yibrN4dxnzfuznoIj24q8rqCFaPPBNE7kOFxWv4iISFkpEEmxbu3flI7RIaRm5fH4j+vP2HWWkZ3HC7+Z+5WNG9ScqBC/ogd0uxmaDYS8LPhpLDjyCp+KCvGlXpAPDqfBhv0plfVWREREzkqBSIrlZbPy8uUd8bZZmLXpEFPX7C/2uHfnJnAoNZuYMD9u6d/s9AOsVhj1DvgEw95l8PdbhU9ZLJaT44jUbSYiIm6kQCRn1DoymLsGtQDg6akbOJKeXeT53Ucz+GC+uSnsEyPaFtmvrIjQGBj+onl/zgtwaEPhUwUbva7ZqxYiERFxHwUiKdGdg5rTJiqY45m5PPXzhiLPPT9tEzkOJ/1bhHNu2/oln6jTtdDyfHDmwo+3Q54ZrjoVthAdr4zyRURESkWBSErkbbPyyuUdsVktTFt3gOnrDgAwb+th/th4CC+rhadGti12v7IiLBYY+Sb41YGD6+DXB8AwCtci2nPsBEf/0QIlIiJSVRSI5KzaNwxh7IDmADzx83qS0rJ49heztehfvZsQW6/4/cpOE1QfLv0QLFZY/QUseodgX2+aRwQAsFbdZiIi4iblCkSffvop06ZNK/z9oYceIjQ0lD59+rB7dzl3SxePdveQWFrUC+RIeg4Xv7OQ7YczqBtg596hLcp2ohZDYdh48/7MJ2DL74UDq7XzvYiIuEu5AtELL7yAn585vXrRokXEx8fz8ssvEx4ezv333+/SAsUz+HjZeOWKOKwW2J9irkv072GtCPHzLvvJet4OXW8EDPjhZgaFHga0QKOIiLhPuQLRnj17iI2NBeCnn37isssu47bbbmP8+PH89ddfLi1QPEenmFBuzZ9a36FhCFd0iynfiSwWuOAVaHoO5KQzbO191CWFNXuTS71ViIiIiCuVKxAFBgZy9OhRAGbOnMm5554LgK+vLydOlG1DUE8UHx9P27Zt6d69u7tL8Tj/HtaKN67qxEeju2GznmUgdUls3nDFpxDWDHv6Xt63/4/MzEwSj2W6rlgREZFSshjl+F/y6667js2bN9O5c2e++uorEhMTqVu3LlOnTuWxxx5j/fr1lVFrlUtNTSUkJISUlBSCg4PdXU7NdGQbfDAEslP4wdEfr0sncFHnaHdXJSIi1Vh5/n6Xq4UoPj6e3r17c/jwYX744Qfq1q0LwIoVK7jmmmvKc0qprcJbwJWTcGLjMttfBCx/x90ViYhILVSuFqLaQi1EVWfNlFeJW/scTixYr/oC2lzo7pJERKSaqrIWot9//50FCxYU/h4fH0+nTp249tprOX5cKw5L2QWfM5ZP887FioEx5TY4sNbdJYmISC1SrkD073//m9TUVADWrVvH//3f/3HBBRewc+dOHnjgAZcWKLVDk7r+vOl1M3852mPJzYCvroG0Q+4uS0REaolyBaKdO3fStm1bAH744QcuvPBCXnjhBeLj45k+fbpLC5TawWKx0L5RXcbl3kNKQBNI3QtfXwu51X/WooiIeL5yBSK73U5mpjk9etasWZx33nkAhIWFFbYciZRVp+gQUgnkvaj/gm8o7FsOP98FGuYmIiKVrFyBqF+/fjzwwAM899xzLF26lBEjRgCwdetWoqM1ZVrKp2ALj1lJQXDV52D1gvXfw/xX3VuYiIjUeOUKRO+88w5eXl58//33vPfeezRs2BCA6dOnM3z4cJcWKLVHQSDafjid1Kje5mrWAHOehw0/ua0uERGp+TTtvgSadl/1+r30J3uPn+DLW3rSJzYcpj8CS94DLz+4aTo06OzuEkVExMOV5++3V3kv5nA4+Omnn9i0aRMA7dq1Y9SoUdhstvKeUoS4mFD2Hj/B6r3JZiA673k4ug0SZpkzz26dA8FR7i5TRERqmHJ1mSUkJNCmTRv+9a9/MWXKFKZMmcL1119Pu3bt2L59u6trlFqkU3QoAKsTk80HbF5w+ccQ3grSDsDX10CO9jsTERHXKlcguueee2jevDl79uxh5cqVrFy5ksTERJo2bco999zj6hqlFunUKBSANXuTTz7oGwLXfg1+YbB/FUy5FRx5bqlPRERqpnIFonnz5vHyyy8TFhZW+FjdunV58cUXmTdvnsuKk9qnXYNgbFYLh1KzOZiSdfKJsGZw1Rdgs8PmX+GnseB0uK9QERGpUcoViHx8fEhLSzvt8fT0dOx2e4WLktrL3+5Fy/pBAKze849tYJr0hSs+Nafjr/sWfr1PaxSJiIhLlCsQXXjhhdx2220sWbIEwzAwDIPFixdzxx13MGrUKFfXKLVMp5gQAFbvSTn9ydYXwKXvg8UKKz+D3x9RKBIRkQorVyB66623aN68Ob1798bX1xdfX1/69OlDbGwsb7zxhotLlNqmU/56RGv2JBd/QPvL4KJ48/6SCTDraYUiERGpkHJNuw8NDeXnn38mISGhcNp9mzZtiI2NdWlxUjsVLNC4bl8KDqeBzWo5/aBO+fucTXsAFr4B9gAY8FCV1ikiIjVHqQPR2XaxnzNnTuH9119/vfwVeYD4+Hji4+NxODRo1x1a1AvC324jPTuP7YfTC8cUnab7zWYomvk4zPkvePtBn7urttgqMnXNfoJ8vBjUup67SxERqZFKHYhWrVpVquMslmL+b76aGTduHOPGjStc6VKqls1qoX3DEJbuPMbqPclnDkQAfe4yQ9Gc52Hmf8DLF3rcWnXFVoE9xzK556tVeNssrHjiXIJ9vd1dkohIjVPqQHRqC5BIZescE8rSncdYsyeZK7vFlHzwOQ9CbiYseB1+exC8/aHzdVVTaBVYtusYALkOg4XbjnB+B63ULSLiauUaVC1S2QrGEa0+08DqU1ksMORJ6DnW/H3qXbDu+0qrraot331y+YE5W5LcWImISM2lQCQeqSAQbT6YRlZuKcZyWSwwfDx0HQOGE6bcBpt+rdQaq8rKUwLRvK2H0X7MIiKup0AkHqlBiC/hgT44nAYb9hezHlFxLBYY8T/oeDUYDvj+Rtg2q3ILrWSpWblsOWQugmr3snIoNZtNB05fFFVERCpGgUg8ksViKVyPqNgFGs/EajXXKGp7EThy4JvrYOdflVNkFViVmIxhQKMwf/rHhgMwd6u6zUREXE2BSDzWyRWrk8v2QpsXXPohtBwOeVnw5VWwZ6nrC6wCK/K7y7o1rsPAVhEAzN1y2J0liYjUSApE4rHizrZidUm87Oa+Z80GQm4GfHEZ7C/d0hGepGD8UJfGdRjYylyDaMXu46ScyHVnWSIiNY4CkXisjtGhACQey+RYRk7ZT+DtC1d/CY36QHYqfH4JHNro2iIrUZ7DyarE/BaiJnWICfOneUQADqfBwoQjbq5ORKRmUSASjxXi502ziAAA1uxNLt9J7AFw7TfQsCucOA6fjYJF70LGUdcVWkm2HEojI8dBkI8XLeqZi1MWtBLN1fR7ERGXUiASj9Ypv5VodWJy+U/iGwzX/wCRHSDjMMx4FF5rBd+OhoRZ4PTMLVoKxg91ahRauJ9bwTgiTb8XEXEtBSLxaIXjiMrbQlTArw7cNANGvAZRncCZCxt/MscWvdER5rwAx3dXsFrXOjmgOqzwsR5Nw/Dztmn6vYiIiykQiUfrdMrA6gq3iNgDoPstcPs8uP0v6HEb+IZC6l6Y9xK8GQefXWSucp2bVeHaK6ogEHVtXKfwMR8vG32a1wU0/V5ExJUUiMSjtY4Kwm6zcjwzl8Rjma47cVRHuOAV+L8tcNlH0HQAYMCOufDDzfB6a/jtITi4znXXLINDqVnsPX4Cq8XsMjvVwPwd7+du1vR7ERFXUSASj+bjZaNNg2CgHOsRlYa3L3S4HEZPhXvXwDkPQXBDcwD20okwoR+8PxCWfQRZZVggsoIKWodaRwYT6FN0D+aBLc1xRCsSNf1eRMRVFIjE43WKNhdoXFOWFavLo04TGPw43LcOrvvBXO3a6m2uXzTtAXi1Ffz5X6iCwczFdZcV0PR7ERHXUyASj1fQZVThgdWlZbVBi6Fw5Wfwf5th2AsQ0QbyTsD8l+Hvtyq9hOUlBCLQ9HsREVdTIBKPF5c/9X79vhRyHc6qvXhAOPQeB3cugvOeNx/740nY8FOlXTIr18GGfWZr2JkD0cltPDT9XkSk4hSIxOM1qRtAsK8X2XlOthx001RziwV632XOTAP48XbYs6xSLrV2bwp5ToN6QT5E1/Er9piC6fdJadlsPJBaKXWIiNQmCkTi8axWS+F6RJUysLq0LBYY/uLJTWO/uhqO7XT5ZZbvPgaY23VYLJZij/HxstE3Nn/6vTZ7FRGpMAUiqRY6eUIgAnN80WUfQWRHyDwCk6+AzGMuvUThhq6Niu8uKzAgfxzRPAUiEZEKUyCSaqFgHNEadwciAJ9AuPZbCI6Go9vgmxsgL9slpzYMo8QZZqfS9HsREddRIJJqoWOMOfU+4XA6aVlV/8d/x+F0Lnl3IS/8tsl8IDgKrvsW7EGwewFMvccl0/F3HMngeGYuPl5W2jUIKfFYTb8XEXEdBSKpFuoF+dIw1A/DgHX7qm6BRDBnt10xYRGrEpP58K8dHE7Lbw2q3w6u/BQsNlj7Ncx9scLXKmgdiosOxe519n89C6bfz9ms6fciIhWhQCTVhjvGES3afpSr31/M0YwcAJwGTF9/4OQBsUPgwv+Z9+e9CKu/rND1VuzKHz90lu6yAoMKxhFt1fR7EZGKUCCSaiMuv9ts9qYkMnPyKv16MzYcZPQnS0nPzqNn0zDuHdICgF/XHCh6YNfR0O9+8/7Ue2Dn/HJfc0ViwQ73pQtE3ZvWwd+u6fciIhWlQCTVxsBW9bBZLazYfZyRby9g4/7KCwDfLt/D2C9WkJPn5Ny29fn0ph5c3SMGgKW7jnEg5UTRFwx+EtpdCs5c+Pp6OLylzNdMzswhISkdKH0LkY+XjT7NNf1eRKSiFIiKER8fT9u2benevbu7S5FTtKwfxOc39aB+sA/bD2dwcfxCJi3c6fKuoonztvPQ92txGnBF12jeu64Lvt42okL86N7EDCrT1v6jlchqhYvfg5iekJ0Cky+H9LKN61mZ3zrULCKAsAB7qV+n6fciIhWnQFSMcePGsXHjRpYtq5yViKX8+sSGM/3ecxjaph45DidP/7KRWz9bzrH8MT4VYRgG46dvYvz0zQDcfk4zXr68I162k/+ajIxrAMCv/wxEAN6+cPVXUKcpJCeaCzfmZJb6+oXT7c+y/tA/afq9iEjFKRBJtRMWYOeDf3XjmVHtsHtZmbUpifPfnM/f28s/9TzP4eSRH9Yxcd4OAB45vzWPXtDmtJWiz28fhdViDuzec6yYsBNQF677HvzqwL4V8ONt4Czd/mulXX/on2LC/ImtF4jDabBgm6bfi4iUhwKRVEsWi4XRfZrw0519aR4RwKHUbK77cAmvzNhc5g1gs3IdjPtyJd8s34PVAi9d1oE7BjQv9tiIIB96NTPH7BTbSgQQHmu2FNnssOkX+OOJs9aQ63AWzp7r1qRsgQhOthLN3aLp9yIi5aFAJNVa2wbB/HJ3P67uHoNhQPyc7Vw5cVHxrTfFSMvK5cZPljFjwyHsNivvXteVq7o3KvE1Bd1mv6zZf+aDGvc2xxQBLHoHln1Y4jk3HUglK9dJiJ83zcIDS1X7qQZq+r2ISIUoEEm152/34sXLOhJ/bReCfL1YlZjMBW/+VXJgAY6kZ3PNB4tZtOMogT5eTLqpO8PbR571esPbReJltbDxQCo7Dqef+cAOl8Pg/5j3f/s3bJ15xkOXF6w/1CgUq7X4DV1Loun3IiIVo0AkNcaIjlFMv7c/XRvXIS07j7u/WsXD368tds2ivcczuXLCItbvSyUswM5Xt/aiT/PwUl2nToCdfi3MY8/YbVag/4PQ+XownPDdGPj9Mdj2B+RkFDmscP2hJmGlquGfNP1eRKRiFIikRomu4883t/XinsGxWCzwzfI9XPj2AjbsP7ndx7ZDaVz+3iJ2HMmgYagf39/Rmw7RJe8b9k8XdixFtxmAxQIXvgHNBkJuBiyON6fkv9gYPhkB816BPctYs8scDH22He5LUtBtpnFEIiJlZzE04OCMUlNTCQkJISUlheDgYHeXI2W0aPtR7v9mNQdTs7DbrDx6QWviYkK5adIykjNzaVEvkM9u7kFUiF+Zz52alUu352aR43Ay475zaBUZVPIL8nJg86+wYw5snwspiUXPZ/iz2GjLwOFXYG85FOo2N8NUGew9nkm/l+Zgs1pY+cS5hPh5l/FdiYjUDOX5+61AVAIFourveEYOD/2wlj82HgLMjGEY5r5on4zpTp0yLID4T7d+tpw/Nh7irkGxPDisVelfaBhwbAfsmAs75pKTMBd77j/G/QRHQ/OB0GwQNB0AgRGlOvXQ1+eRkJRO/LVdGNExqvQ1iYjUIOX5+60uM6nR6gTYef+Grjx3kblmkWFA/xbhTL6lZ4XCEMCF+YHj17X7yzazy2IxW4C63wxXfc749tMYlf0csxrcAU36m9P1U/fCqi/gh5vh1Vh4rx/MexlOJJd4ak2/FxEpHy93FyBS2SwWCzf0bkLv5uGs3pPMqLgG2L0q/v8CQ9vUx9fbyq6jmWzYn0r7hmUbh1RgWWIK643mZPW6HDo2MFe3Tvy7sAWJg+vgUP5t0TvQ+27odQf4nN5NN7BVPT5csJO5+dPv/7mwpIiIFE8tRFJrxNYL5PKu0S4JQwABPl4MaV0fKMXg6jPIyM5j04E04JQVqu3+EDsUznse7lgADybAxRMgojVkpcCc5+GNjrDgjdNmqxVMvz+cls2GStz8VkSkplEgEqmAk91mB8q1IOKavck4nAYNQnzPPLg7MAI6XQNj/4bLPoK6sXDiGMx6Ct6Mg0XxkHsCKJh+by4JMG+rpt+LiJSWApFIBQxqXY8Au419ySdYmZhc5tevyF+QsWtp1h+y2szFHu9cYq6CXacJZByGGY/BW51h6QeQl83AVhpHJCJSVgpEIhXg623j3LZmt9mva8vebVawIGPXRqGlf5HNCzpdC3cth5FvmjPS0g7Abw/CW10YkfM7XuSxMjGZlBO5Za5JRKQ2UiASqaCCvc2mrT2Aw1n6bjOn02Bl4Q735Vih2uYNXcfAPSvhglchKApS91Lnz4f4y+/fXGKZy8ItB8t+XhGRWkiBSKSC+reIINjXi6S0bJbtOlbq1yUcTic1Kw8/bxttos6ysGNJvHygx61wz2oY/iIE1CPKOMSr3hPp/ttwWPstOB3lP7+ISC2gQCRSQXYvK8PamZvClqXbbEV+61CnmFC8bC74V9HbF3qNhXtXs6vzwxwzAonI2QtTboV3e8PyTyC7hM1oRURqMQUiERco6Dabvu4geQ5nqV5TsMN94XR7V7EHEDXiYc4z3uGV3Ctx2IPhyBb49T54rRX8ch8cWOPaa/6DYRhsPpjKh3/t4N6vV7Fo+9FKvZ6ISEVpYUYRF+jTvC5hAXaOZuSwaMdR+rc4+1YbKwsGVDdxcSDCnH7fqXkM8ZsuJrT7ndzq/xesmATHtsOKT8xbw67mGKT2l4E9oMLXTErNYkHCEf7adoQFCUc4nJZd+Nxv6w7w2pWdGJUfHEVEPI0CkYgLeNmsnN8+kslLEvllzf6zBqKj6dnsPGIuqtglxvWBCGBgqwhmbTrEzO0nuPWOe6DP3bBzvhmGNv0K+1aYtxmPQ8croeuNENm+1OfPzMljyc5jLNh2hAXbjrDlUFqR5329rfRsWhcw10S656tVHE7L5uZ+TV36PkVEXEGBSMRFLuzYgMlLEvl9/UGev7hDiStiF4wfalk/kBD/ytmVvmA9ohW7j5OSmWtep9kA85Z+GFZPNluNju+EZR+at+juZjBqd4m5YvYpHE6D9ftS8luBDrNydzI5p3QPWizQvkEI/VuE069FOF0b18HHy4bTafDsrxuZ9Pcunvt1I0mpWTw8vDVWq7YVERHPoUAk4iI9moYREeTD4bRsFiQcZnD+th7FKVx/yNXjh04RXcefFvUC2ZaUzl8Jh7mw4yndVYER0O8+6HMP7JxnthptngZ7l5m3GY/i6HA12xtdwZL0CBbtOMrf24+SnFl0XaOGoX6FAahv8/BiN8y1Wi08NbIt9YN9een3zUycv4PDadm8dHlHvF0xmFxExAUUiERcxGa1MKJDFJP+3sUvaw6UGIgK1h/q0qjyAhGYrUTbktKZu+UfgaiA1QrNB2E0G8jexF2kLZlEVMI31Mk6gG3ZRFoum0iysxWL84aR7OxJkI83vZvXzQ9BETSp61+qDWQtFgtjBzYnIsiHh39Yy5RV+ziSkcN713UhwEf/GRIR99N/iURcaGScGYj+2HiIrFwHvt62047JznOwZm8KAN1Ks2VHBQxsVY8P/trJvK2HcTqNwm6qo+nZrNmbzOo9KazZk8yavcn5rT89sNCN/tZ1XGv7k6G2FfSwbqGHfQvjo/rgf/EbeNVvVe56Lu8aTd1AO3d+sZL5Ww9zzQeL+XhMd8IDfVz0jkVEykeBSMSFOsfUoWGoH/uSTzB3SxLD20eddsyG/ank5DkJC7DTpK5/MWdxnW5N6uBvt3E4LZuXZ2xh7/FM1uxNZs+xE6cda7dZadsgmE4xoXSK6UKrmHux2VPMcUYL3yL4wN/wfj/o9wD0u99c96gcBrWqx1e39eKmSctYuzeFy9/7m89u6kmjSv4sRERKokAk4kJWq4URHaN4f/4Ofll7oNhAVLCha5dGdUrV3VQRPl42+jQPZ9amQ0yYt73Ic80jAoiLCc0PQKG0jgwuZiB4AAx6zNw7bdqDkPAHzHsR1n0HF74OzQaWq65OMaF8f0dv/vXxUnYdzeTS9/5m0o3dad8wpHxvVESkghSIRFxsZMcGvD9/B39uSiIzJw9/e9F/zQpmmHWrhPWHinP7gGbsTz5Bg1A/OjcKJS46lA7RIYT4lWF2W50mcN13sPEnmP6IuZ7RZxdBhyth2H8hsF6Z62oWEciUsX0Y/ckyNh1I5er3FzPh+q70axFe5nOJiFSUpniIuFj7hsE0ruvPiVwHszYlFXnOMIwqmWF2qu5Nwvjt3v58OLob4wbF0q9FeNnCUAGLxZyOf9dS6HEbYIF138I73cxtQZylW6H7VPWCffnm9l70blaX9Ow8bpy0lKlrSr/9SWV6e/Y2rpy4iGMZOe4uRUSqgAKRiItZLBYu7Gh2lf36jz/ue46d4HBaNt42Cx2qa/eQbwhc8ArcOhsiO0JWirktyMfD4NCGMp8u2NebSTd1Z0THKHIdBvd8tYqPFux0fd1l8Pni3bz2x1aW7jzGN8v2uLUWEakaCkQilaBgb7O5Ww6TmnVy7Z4ViccAaN8wpNgZaNVKw65w6xwYNh7sgbB3KUzoDzOfgJyMMp3Kx8vG21d3ZkyfJgA89+tGxk/fhNNpVELhJftr22Gennoy2P2wci+GUfV1iEjVUiASqQSt6gcRWy+QHIeTPzYcKny8YPxQ10pef6jK2Lyg950wbim0GQmGA/5+C+J7wZbfy3SqggUcHx7eGoCJ83bw4HdryC3lZrmukJCUzp2TV+JwGozoEIWPl5WEpHTW7UupshpExD0UiEQqgcViYWT+Qoi/rj3ZbVaww31VDaiuMiEN4aov4JpvICQGUhLhq6vgm+shZV+pT1OwgOOrV8Rhs1qYsmofN3+6nIzsvEos3nQ8I4dbPl1GWlYeXRvX4fWr4hjWLhKAH1bsrfTri4h7KRCJVJIL48xxRH9tO8LxjBzSsnILN0Ct7BWq3abVcBi3xNxI1mKDTb9AfA9Y+XmZTnN512g+HN0NP28b87ce5vqPlpCcWXmDm3PynIydvIJdRzOJruPHxBu64uNl49IuDQGYumY/OXlV11IlIlVPgUikkjSPCKRNVDB5ToMZGw6yek8yhgExYX7UCy7foobVgj0Aznsebp9nbhabkw5T74Kf7oSczFKfZlCrenx5a09C/b1ZlZjMlRMXcTAly+XlGobBkz+vZ/GOYwT6ePHR6JMrZ/eLDadekA/HM3OZsyXpLGcSkepMgUikEo3MbyX6Ze3+k91ljSt3uw6PEdkBbpoJQ54EixVWT4YPh8KRhFKfonOjOnx7e2/qB/uw9VA6l0/4m51HyjZg+2w+WrCTr5ftwWqBt6/pTKvIoMLnvGxWLu5sthJNWaluM5GaTIFIpBJd2MEcR7Ro+1H+2GgOru5SResPeQSrFfr/H/zrZwiIgKQN8P5A2PBTqU/Rsn4Q39/Rh6bhAew9foIrJvzNehcNcp696RD//W0TAI+PaMug1qcvMHlZl2gA/tycxHGtSSRSYykQiVSiRnX9iYsJxWnAxgOpQA2aYVYWTc+B2/+CRn0gJw2+Gw2/Pwp5pQsYMWH+fHt7b9o1COZIeg7XvL+YJTuOVqikTQdSueerVRgGXNOjETf1bVLsca0ig2jXIJhch8Evaz1j0UgRcT0FIpFKNrLjyf3MAn28inTJ1CrBUTD6F+h7r/n74ndh0ohSz0KLCPLhq9t60aNpGGnZefzr46XM2njo7C8sxuG0bG75dDkZOQ56N6vLsxe1K3FfuYJWoh9Wln7GnIhULwpEIpXsgg4nA1HnRqHYrJW7oatHs3nBuc/C1V+CT4i5mOPE/pAwu1QvD/b15rObejC0TX2y85zc/sWKMk+Jz8p1cPvny9mXfIKm4QG8d30XvG0l/6dwVKcGeFktrNmTTEJSepmuJyLVQ40PRHv27GHgwIG0bduWjh078t1337m7JKllGoT60T1/3aGq2r/M47UeYc5Ci+wImUfhi8tg7ovgdJz1pb7eNiZc34XLukTjcBr833drSr3Vh2EYPPzDWlYmJhPs68VHo7sR6m8/6+vCA30Y2CoC0OBqkZqqxgciLy8v3njjDTZu3MjMmTO57777yMhw7SwVkbN5ZlR7ru3ZqHBrCgHCmsLNf0DXMYABc8fD5Msh4+xjg7xsVl65vCM392sKmFt9vDpjy1m32Iifk8DPq/djs1p47/quNIsILHW5l+Z3m/24ah8ON2wpIiKVq8YHoqioKDp16gRAZGQk4eHhHDt2zL1FSa3TtkEwL1zSoVStEbWKty+MfBMungBefrD9T7MLbc/Ss77UarXwnxFt+PewVgC8MyeB//y0/oxh5bd1B3h15lYAnr2oHX1jw8tU6pA29Qj29eJAShaLKzigW0Q8j9sD0fz58xk5ciQNGjTAYrHw008/nXZMfHw8TZo0wdfXl549e7J06dn/Y1mcFStW4HA4iImJqWDVIuJSna6BW/+EurGQug8+OR8WvwdnafGxWCyMGxTLC5d0wGKByUsSuefrVaetKr12bzIPfLsagBv7NuG6no3LXKKPl61w015t5SFS83i5u4CMjAzi4uK46aabuPTSS097/ptvvuGBBx5gwoQJ9OzZkzfeeINhw4axZcsW6tUz1wzp1KkTeXmn73U0c+ZMGjQw/wN27Ngx/vWvf/HBBx9U7hsSkfKp3xZumwtT74YNP8Lvj0DiIhj1DvgGg9MJeVmQewJyM82feScg9wTXhmfScsBxJi/YhNeGHL5653uu6RyO3cghLdfKzMUHGem00SS6Hne09IJdyWD3B3ugubK2t7/50+ZdYomXdolm8pJEpq8/yHMX5xHg4/b/hIqIi1iMs3W6VyGLxcKPP/7IxRdfXPhYz5496d69O++88w4ATqeTmJgY7r77bh555JFSnTc7O5tzzz2XW2+9lRtuuKHE47Kzswt/T01NJSYmhpSUFIKDg8v3pkSkbAwDln4AMx4DZ67ZlYZhhqHKZrObwcgeaIak4CjofAO0vQhs3hiGweDX5rHzSAavXhHH5V2jK78mESmz1NRUQkJCyvT326P/9yYnJ4cVK1bw6KOPFj5mtVoZOnQoixYtKtU5DMNgzJgxDB48uMQwBDB+/HieeeaZCtUsIhVksUDP26BhF/huDKTsOf0YL1/z5u0P3n6n/PQlJc+bxXsySc3zJtdqx+bMo453Dv0b++FnZJt7q+VkmK1MBfed+S3Mjhw4kQMnzG1WOLIFdsyFmU9Aj1uwdL2RSzs35LU/tjJl5V4FIpEaxKMD0ZEjR3A4HNSvX7/I4/Xr12fz5s2lOsfChQv55ptv6NixY+H4pM8//5wOHTqcduyjjz7KAw88UPh7QQuRiLhBdDe4eyUk7wYvn5Ohx8vP3BLkDEKAZofSuOGjpRxMzcJuszJ5dE/8mpSwh1xezulBKTvd7LJb9iGk7YfZz8K8l7mx9WVMtcSxaAfsSz5Bw1A/1793EalyHh2IXKFfv344nc6zHwj4+Pjg4+NTyRWJSKl52SG8RZlf1qJ+EN+P7c1bs7dxfvsoupcUhgqu4xUG/v84rtkA6Hc/rJ9irqx9cC2B6yfzh89k/nK0Z9WsQzS8dEyJAU1EqgePDkTh4eHYbDYOHSq6PP+hQ4eIjIx0U1UiUh1E1/Hn5cvjKn4iLx9zFlzc1WaL0eJ3MTZNo79tPay/H2P/O1h63g6drgWfWroti0gN4NH/W2O32+natSuzZ59c1t/pdDJ79mx69+7txspEpNaxWKBxH7jqCzLHruAj50hSDX8sx7bD9Ifg9bbw+2NwfJe7KxWRcnB7IEpPT2f16tWsXr0agJ07d7J69WoSExMBeOCBB/jggw/49NNP2bRpE2PHjiUjI4Mbb7zRjVWLSG0WUL8Z69s9SK/sd/gl+v+gbgvIToXF8fBWZ/j6Oti14KzrKImI53D7tPu5c+cyaNCg0x4fPXo0kyZNAuCdd97hlVde4eDBg3Tq1Im33nqLnj17Vnpt5Zm2JyK1w1/bDnPDR0sJ8fNm6WOD8Nk111xMcvspG9XWawc9boEOV4JP6bcJEZGKKc/fb7cHIk8UHx9PfHw8DoeDrVu3KhCJyGkcToO+L/7JwdQsJlzfheHto8wnDm+BJRNg9VfmwpEAPsHmGKPut5RrkLiIlI0CkYuphUhESvLi9M1MmLedoW3q8+HobkWfPHEcVk2G5R/BsR0nH282ELrfCi2Hg82j57WIVFvl+fvt9jFEIiLV1WVdGgIwd0sSR9Oziz7pVwf63AV3rYDrf4CW5wMWc6HHb66DN+Ng/quQfrjK6xaR0ykQiYiUU4v6QXSMDiHPafDLmv3FH2S1QuxQuPZruHcN9L0P/MIgdS/8+Ry83gZ+uAUSl2gQtogbKRCJiFTApZ3NVqIfVu47+8F1GsO5z8ADm+DiCdCwm7lf27rv4OPzYGJ/WPEp5GRWctUi8k8KRCIiFTCqU0O8rBbW7Uth66G00r3I29dc7PHW2XDbXOh0vbk328F18Ms98Hpr+P1ROLi+UmsXkZMUiEREKiAswM6g1vUA+GHl3rKfoEFnuDjebDU69zmo0wSyUsytQib0hff6wsK3IPWAawsXkSIUiEREKuiyLuau9z+t2ofDWc5xQP5h0PceuHsVXPsdtBkJNjscWg9/PAH/awufXwJrvjE3oRURl9Kcz2Kcug6RiMjZDGodQai/N4dSs1mYcIRzWkaU/2RWK7Q8z7xlHoMNP8Lab2DPEtj+p3n7NQDajoKOV0HTc8Bqc92bEamltA5RCbQOkYiU1pM/r+ezRbu5uFMD3ri6s+svcGwHrP0W1nwNx3eefDwoCjpcYW4+W79d+c7tyIOMw5B+ENKTwJELsUPA2881tYtUMS3M6GIKRCJSWqv3JHNx/EJ8va0se3woQb7elXMhw4A9S2Ht17B+CmQln3wusgN0vNoMSEH1zdlq6YfMW9rBU+4fMsNPWv7vGYeBf/wpqNsCLoqHRpW/TZKIqykQuZgCkYiUlmEYDH19HtsPZ/Dy5R25sltM5V80Lxu2zjC71LbOMKfwA1isYA80N5wtLYsVAuqZQSp1f35IskCvsTD4CbD7V8pbOI1hgMVSNdeSGkuByMUUiESkLOLnJPDKjC30ahbG17f1rtqLZx6DDVPMLrW9y04+7uVnhpzAyPyf+begyKL3/eueHIt04jjMeBxWTzZ/r9PUbC1q0rfy6j+yDea+CJt/hYGPQr/7Ku9aUuMpELmYApGIlMX+5BP0felPDAP+emgQMWFV1KryT8l7IC/LDDs+QeVvcdn2B/xyL6TmLzrZ4zYY8hT4BLqu1mM7YN7LZiuX4Tz5+Mg3oesY111HahXtZSYi4kYNQv3o07wuYE7Bd5vQGAhvAb7BFet+anEu3LkIuow2f1/6PrzX29yPraKSE+Hnu+DtbrDmKzMMtRoB3W8xn//1ftj0S8WvI5Xq4wU76frcH6zfl+LuUipMgUhExIUu7WyuSTRl1T5qRAO8bwiMegtu+BFCYswg89lF8Mt9kFWGMUoFUvaZYeetLrDqczAcEHsu3DoHrvkSLnjVDGCGE76/GXYtdPlbEtc4mp7NKzO2cDQjh+9XlGNRUg+jQCQi4kLD20fib7ex80gGKxOTq/z6J3Ic3Dl5Bfd9vYptpd1KpDSaDzZbi7rdbP6+4hN4tzckzCrd69MOwvSH4a3OsPxjcwB4s4Fw8x9w/ffQsIt5nMUCI16H1heCIxu+ukZbmHio9+fv4ESuuV7fwoQjbq6m4hSIihEfH0/btm3p3r27u0sRkWomwMeL4e0jAdzyf80f/LWD39Yd5KfV+znvjfnc9/Uqdh5x0crWPkFw4esw+hdzi5HUvfDFZfDzODiRXPxrMo6YA7Tf7ARLJpghp3FfGDMN/vUzxPQ4/TU2L7jsQ2jUB7JT4ItL4fgu17wHcYkj6dl8tmh34e/bktI5lJrlxooqToOqS6BB1SJSHn9vP8K1HyzB7mVl1v0DaFS3agZXJ6VmMfDVuWTmOOjcKJRV+S1UNquFSzs35J4hLVw30DsnA2Y/C0smAoa5QOTIN6HlMPP5zGPw91uw5H3IzQ9k0T1g8OPQdEDpxjadSIZJI8ztS8KawU0zIbACq4CLy4z/bRMT5+8gLjoEh2Gwfl8qr18Zx6X529i4mwZVi4h4gN7N6tKneV1y8py88NumKrvu639sJTPHQaeYUKaM7cOvd/djcOt6OJwG363Yy6BX5/LYj+vYn3yi4hezB8D5L8GN0yGsOaQdgC+vhCm3w5wX4I2OsOB/Zhhq0Bmu+x5unml2k5V2oLdfqPm60EbmbLTJl0O2C7sB/0ntA6VyauvQfUNb0i/WDKkLE466s6wKUyASEXExi8XCUyPbYbNa+H3DQf6ugvEVmw+m8u3yPQA8cWEbLBYL7RuG8PGY7ky5sw/9W4ST5zT4ckkiA1+Zy9NTN5Dkii6Oxr3hjgXQ+y5zcce1X8O8lyAnDep3gKu/MgdMtzi3fDPegqPg+h/NdZIOrIZvrjcXpHSl7DT440l4sbEZ5qREBWOH4mJCGdgqgr6x5szKhQlHqvVEAgUiEZFK0CoyiOt7NgLgmV82kudwnuUVFfPfaZtwGnBBh0i6Ng4r8lyXRnX4/OaefHt7b3o2DSPH4WTS37s455U5/HfaRo6mVzBg2P1h2H/NLq3IDubtik/h9vnQ+oKKrzwdHmu2FNkDzSn/P94BThd8nk4nrP4K3u4KC980xyvNewmWf1Lxc9dQZuvQLgDuG9oCi8VC9yZh2L2sHEzNYoerxqu5gQKRiEgluf/cltTx92bLoTQmL0mstOvM23qYv7Ydwdtm4eHhrc94XI+mYXx9Wy8m39KTLo1Cycp18sFfO+n/8hxembGZ5MycihUS091sLbpjAbS7GKwu/BPTsAtc9TlYvc0VuX9/uGJdXPtWwMfnwU93mPu5hTWDTteZz037P9g+xzV11zDvz99BVq7TbB1qaXaV+Xrb6NqoDlC9Z5spEImIVJJQfzsPnNcKMMf3HM+oYOAohsNp8MI0c5zS6N5NaFw3oMTjLRYLfWPD+WFsHz65sTsdGoaQmeMgfs52+r80hzdmbSU1K9fldbpE88FwyQTAYi4S+derZT9HepI5K+6DweYWJ/ZAGPo03LnY3J6k41Xm2kjfjobDW1z9DoqXewKWfVh11yunw2mntw4V6NciHKjegcjL3QWIiNRk1/ZoxOTFu9l8MI3X/tjC8xd3cOn5v12+hy2H0gjx8+buwS1K/TqLxcKgVvUY2DKCPzYe4vU/trL5YBpvzNrGh3/tpHFdf8IC7IQH+hAWYKduoJ26AXbqBvgQVnA/0IcAu63IH8ZK1+FyyDwK0x+CP5+HgIjSbfGRlwNLJ5rbhBRsetvxajMMBUedPG7U2+bik4mLYPIVcOufEBBeGe/ElJ0OX10Nu/4CvzC44y8I8YyZWv/0/vztZOU66XRK61CBvrHhvDJjC39vP4rDaWCzVr8NehWIREQqkc1q4elR7bj6/cV8uSSRa3s0pm0D1yzjkZ6dx2sztwJwz5AWhPh7l/kcFouF89pFMrRNfX5bf4D//bGV7Ycz2LC/dKtQ272shAfY80OSD3UD7AxqXY+RcQ3KXEup9bzdbOn561Vz1Wv/utBm5JmP3zYLfn8Ejm4zf4/qBBe8UvwaSF4+cNVk+HCwufbR19fB6Knm4652ItkMXXuX5v9+DL67EW78DWxl/2dZmQ6nZfP54oKZZS1OC8EdGoYQ5OtFWlYe6/al0Ckm1A1VVowCkYhIJevVrC4jOkQxbd0Bnv11A1/d2sslrSoT523nSHo2Ter6c0OvxhU6l9Vq4cKODTi/fRSbDqRyOC2boxk5HE3P5lhGTpH7R9JzOJqRTVauk5w8J/tTstifcnLG2pRV+3AaBhd1aljRt3hmg/8DGUmw8jNzi48bppAW2ZNch0FYgN085uh2c1HIrdPN3/3DzRahTteVPL4poC5c+x18OBT2LDb3XLv0/YoPDj9VxhH4/BI4uBZ8Q+HC/5nboexdCn88BcM9a7bbxHknW4cGtDx9LSib1ULvZnWZufEQCxOOKBCJiEjxHr2gNbM2HWLxjmNMX3+QCzpEnf1FJTiQcoIP/toBwCPnt8bu5ZohoTarOV2/NDJz8jiaboalYxnZHEnPYfH2o0xZtY+Hf1hLbL1A2jUo3bnKzGKBEf8zF4Dc/CvOL6/mTuNp1uTG8Me4btRf8zYsigdHDli9oMftMOAhc22j0ohoCVd9Zq7Eve5bqBsLAx92Te2pB+Dzi+HwZrPL74afILK92Qr19bWwOB4a9YS2F7nmehWUlJbFF0vO3DpUoG9seGEgGjcotipLdAkNqi6Gtu4QEVeLruPP7QOaA+YU+az8PaDK65UZW8jKddKjSRjD2kW6osQy87d7ERPmT6eYUAa3rs+V3WJ45Yo4BraKICvXyW2freBYJQwkL5S/xUdedC+sOWm8lvMcl+ROw29id3NRSEeOORB77N9mi0tpw1CBZgNhxGvm/bkvwLrvK15zciJ8cr4ZhoIbwo2/m2EIoPUI6HO3ef/nu8wWLg/w/jxzZlnnRsW3DhXoG2uOtVq++3iFv9/uoEBUjHHjxrFx40aWLVvm7lJEpAYZO6A5DUJ82Zd8gonzdpT7POv3pTBl5T4AHh/RpmoHNZ+FzWrhzas607iuP/uST3DXlysrdQ2mXKsPd/Ewm5wx1LMk84z3pwTnHSUvuLG5KOT1UyCiVfkv0HXMyZDy052QuKT85zqSAB+fD8d3mnvB3TjdXGPpVEOegka9zYHf3/7LnIHmRkVbh1qW+F1rHhFAZLAvOXlOlu86XlUluowCkYhIFfGz23j0gjYAvDcvgX3l2ELDMAyen7YRgIs6NSDOA8dqhPh78/4N3fC32/h7+1FenL65Uq5jGAZP/ryB3xNOcLvxGNnBTcmy+PBy7lU8Gf2haxaFBBj6DLQaYW5M+/W15dto9tAGs2UodS+EtzTDUJ1ixn3ZvOHyj83xTofWw2//rnD5FTHxlNahc1qUPNvOYrHQp2DV6u3Vb/q9ApGISBW6sGMUPZqGkZXrZHw59jmbvSmJxTuOYfey8u9hFWj5qGStIoN47Yo4AD5csJOfV+9z+TXen7+Dr5YmYrHAf64ejM89S9h0wxredVzEN6uPsNNVqyZbbXDZBxDZETKPwJdXQVZK6V+/b6W5SW1GkrmK943TIbiEWXjBDeDyjwALrPocVk2u8Fsoj6S0LL5YXLrWoQL9YqvvekQKRCIiVcjc56wtVgv8uvYAS3aUfkPMXIeTF6abIermfk2JruOinesryfkdohg3yBw39dD3a1m/rwwh4ix+W3eA8fktT0+MaMt57SLBy4fOzaIKN7R9c9ZWl10PewBc+w0ERZnjf74bA468s79u9yL4dBScOA7R3WH0L6Vb16jZQBj0mHl/2v+ZLUxVbOK8HWTnOelSitahAgXjiNbtS6n4yudVTIFIRKSKtWsQwtU9Tu5z5nCWbguKr5YmsuNwBmEBdsYObF6ZJbrMA+e2YmCrCLLznNz+uWsGWa9MPM7936wGYHTvxtzYt8k/rtkSgJ/X7GfrobQKX69QcAO45mvw9oftf8L0f5e8fcj2P82p9Tlp0KQ/3PAj+NUp/fX6PwjNh0DeCfjmBsgq3dpQrpCUWvbWIYD6wb7E1gvEMGBxGcK+J1AgEhFxgwfPa0WwrxcbD6TyzbI9Zz0+NSuXN2aZCwveP7QFwb6etXDfmbh6kHXi0Uxu/XQ52XlOhrSux5Mj2532x7p9wxDObx+JYcD//nBhKxFAg05w2YeABZZ/DIvfK/64LdPNrrW8ExB7Llz3HfgEle1aVitc+oE5G+3Ydph6d7EBLCfPyd7jmWV+KyWZcErrUP9Stg4VKOg2W1DNus0UiERE3CAswM79+S0Zr87cQkpmyfuHxc9J4FhGDs0jArgmv3WpunDVIOuUzFxunLSUoxk5tGsQzFvXdD7jFhH3n9sSiwWmrz/o0q46wJwef95z5v0Zj5nh51Trf4Bvrjen/bcZCVdPBm+/8l0roC5cMclcS2njT+YebqdwOg1unLSUfi/N4YFvVrukmyopNYvJpZxZVpw+zc2B1X8nqIVIRERK4fpejWlRL5BjGTm8MfvMLRl7jmXyyYJdADx2QRu8bNXvP90VHWSdk+fk9i+Ws/1wBlEhvnw8pjsBPmdeW7hl/SBG5W8f4vJWIoDed0GX0YBhrpR9YK35+MrPzd+deeZGsZdPqvi2HzE94LznzfszHoe9ywuf+n7lXhbmB48pq/Zx7v/mM2PDwQpdrqB1qGvjOmVuHQLo1bwuVgvsOJLB/nLMpHSX6vdvlYhIDeFts/LkyLYAfLZoN9vOMN7llRlbyHE46dO8LoNb16vKEl2qvIOsDcPgkSlrWbzjGAF2Gx+P6U79YN+zvu7eIS2wWS3M3pzEykQXr4tjsZiLNjYdALkZ5gatc1+CqXcBBnS9ES6eYC4e6Qo974A2o8CZC9+OhsxjHM/IKZypeG3PRjSPCOBwWja3f76Cu75cydH07DJfpmjr0JlXpS5JsK83HaNDgeo120yBSETEjfq3iODctvVxOA2e/XUjxj/GiKzek8zUNfuxWDxvEcbyKM8g67dmJzBl5T5sVgvx13WhTVTpNsdtFhHIpZ3N/dQqpZXI5g1XfmauK5S6z1zNGszWowv/V/J+aWVlscBF8RDW3FzLaMptvDx9I8czc2lVP4hnRrVj2j39GTuwOTarhV/XHuC8/83n17X7T/tOleS9edsLW4cKxgKVR3Wcfq9AJCLiZv8Z0Qa7zcpf244wa1NS4eOGYfD8r+YijJd1ia68fcGqkM1q4c2rO9OklIOsf1y1l//lT59/9qJ2DGxVthaye4a0wNtm4a9tRypn1pNfqDkd398cN8OAh83urcoIrr7BZgDz8oWEPwhbFQ/Afy9pj7fNiq+3jYeHt+bHO/vQqn4QRzNyuOvLVdzxxQqS0rLOcnKzdejLJYkA3F+OsUOnOrlA49HiA5lhwMH1sPAtmP1cua/jSgpExdBeZiJSlRrXDeCW/k0BeH7aRrLzzH2gfl9/kOW7j+PrbeXB8zx3EcayCvHz5v1/dSMgf5D1+DMMsl6y4ygPfW+Ozbn9nGZc17OYlZ3PIibMn6u6xwDw+sytZWotKbWwZnDHQoybZpprB1VmK15kexznvwLAA17f8WjrJLo1CStySMfoUH65ux/3DGmBl9XCjA2HOO9/8/lx1d4S339B61C3xnXomx9oyqtLozr4els5nJbNtqR088GMI+Z+cD+Ohddaw4S+8McT5ia8uWcPbJVNgagY2stMRKrauEGx1A/2YffRTD5asJOcPCcv/m4Ghdv6NyMy5OxjZqqTlvWDeO1Kc5D1Rwt28uOqvUWe3344nds+X0Guw+D89pE8PLx1ua9116AW2L2sLN11rFKmgmfm5HHzlL30+zLjjOPAXOmTzH58mzcAm8Xg1qT/QuqB046xe1l54NyW/HxXX9o1CCY5M5f7v1nDLZ8u52DK6eHjUGoWk/Nbh8ozs+yffL1t9GocTA/LJk5MfwomDoBXYuGHm2HNl5B+ELz8zCUJhj5lDkJ3M4tRKXG5ZkhNTSUkJISUlBSCg0vXZy0iUl4/rtrL/d+swd9u44ZejZk4fwcRQT7MfXBgiTOqqrNXZ2zhnTkJ+HhZ+WFsH9o3DOFoejaXvPs3iccy6RQTyte39cLX21ah6zz7y0Y+XriTuJhQfrqzj8vGYmXlOrjl0+WFQatJXX9+HtePEP/KWSfqQMoJhr42D0dOJosjXiA0bRs07gv/mnrGAdy5DicT523nrdkJ5DicBPl68cSItlzRLbrwc3h66gYm/b2Lbo3r8N0dvcv/+RzbAQmzYfuf5CTMxe74x/pI9dtD88EQOwRieoF35QT98vz9ViAqgQKRiFQlwzC47L2/WZmYXPjYi5d2KFzVuiZyOA1u+XQZc7YcpmGoH9+P7c24yStZmZhMdB0/fhrXl/DACk5bBw6nZXPOy3M4kevgw391Y2jb+hU+Z06ek9s/X86cLYfxt9sI8fPmQEoW57SM4JMx3c+4RlJFjP1iBdPXH6Rr4zp8d3kE1g8GmSth9xoHve4wV9H29jfXPfpHqNl6KI1/f7eGNXvN2X39W4Tz4mUd8bJa6P/yHHLynEy+pWfh9hvFcjogJ+PkLTcDkveYq3Jv/xOO7yxy+FEjiEXEcf5F12FrMRiCIl3+mRRHgcjFFIhEpKqt3ZvMqHcWAtA6Mohp9/SvlD+sniTlRC4Xxy9k55EMAuw2MnIcBPt6MeXOPsTWK+PqziV46ffNvDd3O22igpl2dz+sFfhccx1O7vpyJTM2HMLX28qkG3sQ5OvFZe/9TVauk9vPacajF7RxWe0Ac7YkceMny8xZZHf3M2fbbfgJvhtdzNEWMxjZ88ORdwDY/XF6+7MnDTYcziXd6UOuzZeAwGAOp2TQOAjOjQ3EkpMBOemQm5kffNJPBqC8s4z1sXqZLT+xg3E2G0zXDw9x/ISDH8b2oWvjMmxbUkHl+ftdM9tgRUSqqY7RodzUtylfLNnNUyPb1fgwBPmDrG/oysXxC8nIceBltTDhhq4uDUNgjsX6fNFuNh1I5fcNB7mgQ1S5zuNwGtz/zWpmbDiE3cvKh//qTq9m5iDkV6+I464vVzFx/g7aNgjmok4NXVJ7Vq6Dp342N3i9sU+Tk0sPtLsYjj8Di96B7LRTAothtt7kZhQ5jxVoDDS2cnIUcQZmGjgBrCtlQRYr2APNTW/96pjdds0HQ9P+hVuUWIHesSv4bd1BFiYcqdJAVB5qISqBWohExB0MwyDXYWD3ql3zXuZsSeLVGVu4Y0BzRuavMu1q//tjK2/O3kZsvUBm3HdOmQOn02nw4PdrmLJyH942CxNv6Mrg1kW7317+fTPvzt2Oj5eV7+/oQ4foii+X8NrMLbz9ZwKRwb7M+r8BBJ5pTJnTAbknTrbu5GZCTmZ+ODpR5DFnTgZrd+xn7c791K8TyHmdmmMpCDlFboH5rU359+3+5tT/UowzmrxkN4//uJ4eTcP49vbeFf4cSkstRCIiNYDFYsHuVfNbhv5pUKt6DCrjOkNldXP/pkz6excJSelMXbOPSzpHl/q1hmHw+E/rCxeJfPuazqeFIYD/O68Vmw+m8efmJG77fDlT7+pHRFD5x0FtP5zOxHk7AHhqZNszhyEAqw18As3bWViBTudAR6fZLmKphNbIvs3N8UirEo+TmZOHv91zY0ft+t8PERGp1YJ9vbntnGYAvDlrG7klLAp5KsMweOaXjXy1NBGrBf53VSeGty++y81mtfDG1Z1oFhHAgZQs7py8gpy80l2nuOs++fN6chxOBraKYHh71w9KtlotFRpPVZLGdf1pGOpHrsNg6c5jlXINV1EgEhGRWmVMnybUDbCz62gmU1buPevxhmHw4vTNTPp7FwAvXx5XuHHsmQT7evPBv7oR5OPFsl3HefqXDeWqdeqa/SxMOIqPl5VnR7Wvdlu3WCyWwkUe/95eCSuFu5ACkYiI1CoBPl6MHWhuMvvW7ITClcHP5H+ztjFxvtll9d9L2nN519J1szWPCOStazpjscCXSxL5YvHuMtWZmpXL89PMzVvvGhRLo7r+ZXq9pyiYxr9gm2fva6ZAJCIitc71vRpTP9iHfckn+HbZnjMeFz8ngbdmbwPgyQvblnn7kEGt6/HvYea2K09P3VCmbqPXZmzhcFo2zSICuG1AszJd15P0yR9HtPFAaqk283UXBSIREal1fL1t3DUoFoC3/0wgK/f0VqIP/9rBKzO2APDI+a25qV/Tcl1r7IDmXNgxijynwdgvVrAv+cRZX7Nubwqf57coPX9Re3y8KrZStztFBPnQOtKciv/3ds9tJVIgEhGRWunK7jE0DPUjKS37tO6szxfvLuyuun9oS+4Y0Lzc17FYLLxyeRztGgRzNCOH2z9fzomcM3fTOZwGj/+0DqcBF3VqQJ+SVo6uJgq6zRZWwl5yrqJAJCIitZKPl417hpitRO/N3U5GtrnB6LfL9vDET+sBuHNg88JjKsLPbmPiDV0JC7Czfl8qD/+w9ow7z3+5ZDdr96YQ5OPF4yNcu9q1uxQMrF6Y4LkDqxWIihEfH0/btm3p3r27u0sREZFKdGmXaJrU9edoRg6T/t7Fz6v38fCUtQDc1Lcp/x7WymUzu6Lr+PPudV3wslqYumY/7+cP1D5VUloWL+d30z04rBX1gipn89Oq1qNpXbysFhKPZbLnWObZX+AGCkTFGDduHBs3bmTZsmXuLkVERCqRt83KfUNbAuYA6ge+XYNhwPW9GvHEhW1cPs29V7O6PDWyLQAv/r6ZuVuSijz/wrRNpGXl0aFhCNf3KtsAbk8W6ONF50ahgOd2mykQiYhIrTYyrgEt6gWSmePA4TS4omt0pa75c32vxlzTIwbDgLu/WsWOw+kA/J1whJ9W78diMaf317R97Apmmy1QIBIREfE8NquFxy5og9UCl3WJ5sXLOlbays1gDrJ+ZlR7ujWuQ1pWHrd+tpyj6dn852dz3NL1PRvTMTq00q7vLv1amIFo0fajOJ2et42qNnctgTZ3FRGpPap6r62ktCxGvb2Qg6lZRAT5cDgtm/BAH2b/3wBC/LyrrI6qkpPnpNOzM8nMcfDbPf1p26Dy/q6W5++3WohERESgyjcerRfky/v/6oqPl5XDadkA/GdEmxoZhgDsXlZ6Ng0DPHMckQKRiIiIm3SMDuWlyzpiscA5LSO4qFPJe6RVd4XrEXngAo1VG4dFRESkiIs7N6R70zDqBtir3eatZVUQiJbsOEZOnhO7l+e0y3hOJSIiIrVUw1A/fL2r7/YcpdWqfhDhgXZO5DpYvSfZ3eUUoUAkIiIiVcJqtdDbQ6ffKxCJiIhIlemXv43H3wpEIiIiUlsVjCNatSeZtKxcN1dzkgKRiIiIVJnoOv40ruuPw2mwdOcxd5dTSIFIREREqlTh9PuEo26u5CQFIhEREalSfZsXBCLPGUekQCQiIiJVqnfzulgssOVQGklpWe4uB1AgEhERkSoWFmCnXf5eZou2e0a3mQKRiIiIVDlP6zZTIBIREZEqVzCwesG2IxiG4eZqFIhERETEDbo3CcNus+Jrt5Gc6f71iLS5azHi4+OJj4/H4XC4uxQREZEayc9uY/FjQwgLsLu7FAAshie0U3mo1NRUQkJCSElJITg42N3liIiISCmU5++3usxERESk1lMgEhERkVpPgUhERERqPQUiERERqfUUiERERKTWUyASERGRWk+BSERERGo9BSIRERGp9RSIREREpNZTIBIREZFaT4FIREREaj0FIhEREan1FIhERESk1vNydwGezDAMwNw1V0RERKqHgr/bBX/HS0OBqARpaWkAxMTEuLkSERERKau0tDRCQkJKdazFKEt8qmWcTif79+8nKCgIi8Xi0nOnpqYSExPDnj17CA4Odum5azJ9bmWnz6x89LmVjz638tHnVnYlfWaGYZCWlkaDBg2wWks3OkgtRCWwWq1ER0dX6jWCg4P15S8HfW5lp8+sfPS5lY8+t/LR51Z2Z/rMStsyVECDqkVERKTWUyASERGRWk+ByE18fHx46qmn8PHxcXcp1Yo+t7LTZ1Y++tzKR59b+ehzKztXf2YaVC0iIiK1nlqIREREpNZTIBIREZFaT4FIREREaj0FIhEREan1FIjcJD4+niZNmuDr60vPnj1ZunSpu0vyWE8//TQWi6XIrXXr1u4uy+PMnz+fkSNH0qBBAywWCz/99FOR5w3D4MknnyQqKgo/Pz+GDh3Ktm3b3FOsBznb5zZmzJjTvn/Dhw93T7EeYvz48XTv3p2goCDq1avHxRdfzJYtW4ock5WVxbhx46hbty6BgYFcdtllHDp0yE0Ve4bSfG4DBw487ft2xx13uKliz/Dee+/RsWPHwgUYe/fuzfTp0wufd9V3TYHIDb755hseeOABnnrqKVauXElcXBzDhg0jKSnJ3aV5rHbt2nHgwIHC24IFC9xdksfJyMggLi6O+Pj4Yp9/+eWXeeutt5gwYQJLliwhICCAYcOGkZWVVcWVepazfW4Aw4cPL/L9++qrr6qwQs8zb948xo0bx+LFi/njjz/Izc3lvPPOIyMjo/CY+++/n19++YXvvvuOefPmsX//fi699FI3Vu1+pfncAG699dYi37eXX37ZTRV7hujoaF588UVWrFjB8uXLGTx4MBdddBEbNmwAXPhdM6TK9ejRwxg3blzh7w6Hw2jQoIExfvx4N1bluZ566ikjLi7O3WVUK4Dx448/Fv7udDqNyMhI45VXXil8LDk52fDx8TG++uorN1Tomf75uRmGYYwePdq46KKL3FJPdZGUlGQAxrx58wzDML9b3t7exnfffVd4zKZNmwzAWLRokbvK9Dj//NwMwzAGDBhg3Hvvve4rqpqoU6eO8eGHH7r0u6YWoiqWk5PDihUrGDp0aOFjVquVoUOHsmjRIjdW5tm2bdtGgwYNaNasGddddx2JiYnuLqla2blzJwcPHizyvQsJCaFnz5763pXC3LlzqVevHq1atWLs2LEcPXrU3SV5lJSUFADCwsIAWLFiBbm5uUW+b61bt6ZRo0b6vp3in59bgcmTJxMeHk779u159NFHyczMdEd5HsnhcPD111+TkZFB7969Xfpd0+auVezIkSM4HA7q169f5PH69euzefNmN1Xl2Xr27MmkSZNo1aoVBw4c4JlnnqF///6sX7+eoKAgd5dXLRw8eBCg2O9dwXNSvOHDh3PppZfStGlTtm/fzmOPPcb555/PokWLsNls7i7P7ZxOJ/fddx99+/alffv2gPl9s9vthIaGFjlW37eTivvcAK699loaN25MgwYNWLt2LQ8//DBbtmxhypQpbqzW/datW0fv3r3JysoiMDCQH3/8kbZt27J69WqXfdcUiMTjnX/++YX3O3bsSM+ePWncuDHffvstN998sxsrk9rg6quvLrzfoUMHOnbsSPPmzZk7dy5DhgxxY2WeYdy4caxfv17j+sroTJ/bbbfdVni/Q4cOREVFMWTIELZv307z5s2rukyP0apVK1avXk1KSgrff/89o0ePZt68eS69hrrMqlh4eDg2m+20EfCHDh0iMjLSTVVVL6GhobRs2ZKEhAR3l1JtFHy39L2ruGbNmhEeHq7vH3DXXXfx66+/MmfOHKKjowsfj4yMJCcnh+Tk5CLH6/tmOtPnVpyePXsC1Prvm91uJzY2lq5duzJ+/Hji4uJ48803XfpdUyCqYna7na5duzJ79uzCx5xOJ7Nnz6Z3795urKz6SE9PZ/v27URFRbm7lGqjadOmREZGFvnepaamsmTJEn3vymjv3r0cPXq0Vn//DMPgrrvu4scff+TPP/+kadOmRZ7v2rUr3t7eRb5vW7ZsITExsVZ/3872uRVn9erVALX6+1Ycp9NJdna2S79r6jJzgwceeIDRo0fTrVs3evTowRtvvEFGRgY33niju0vzSA8++CAjR46kcePG7N+/n6eeegqbzcY111zj7tI8Snp6epH/i9y5cyerV68mLCyMRo0acd999/H888/TokULmjZtyhNPPEGDBg24+OKL3Ve0ByjpcwsLC+OZZ57hsssuIzIyku3bt/PQQw8RGxvLsGHD3Fi1e40bN44vv/ySn3/+maCgoMKxGiEhIfj5+RESEsLNN9/MAw88QFhYGMHBwdx999307t2bXr16ubl69znb57Z9+3a+/PJLLrjgAurWrcvatWu5//77Oeecc+jYsaObq3efRx99lPPPP59GjRqRlpbGl19+ydy5c5kxY4Zrv2uunQgnpfX2228bjRo1Mux2u9GjRw9j8eLF7i7JY1111VVGVFSUYbfbjYYNGxpXXXWVkZCQ4O6yPM6cOXMM4LTb6NGjDcMwp94/8cQTRv369Q0fHx9jyJAhxpYtW9xbtAco6XPLzMw0zjvvPCMiIsLw9vY2GjdubNx6663GwYMH3V22WxX3eQHGJ598UnjMiRMnjDvvvNOoU6eO4e/vb1xyySXGgQMH3Fe0Bzjb55aYmGicc845RlhYmOHj42PExsYa//73v42UlBT3Fu5mN910k9G4cWPDbrcbERERxpAhQ4yZM2cWPu+q75rFMAyjoulNREREpDrTGCIRERGp9RSIREREpNZTIBIREZFaT4FIREREaj0FIhEREan1FIhERESk1lMgEhERkVpPgUhEpAzmzp2LxWI5be8kEaneFIhERESk1lMgEhERkVpPgUhEqhWn08n48eNp2rQpfn5+xMXF8f333wMnu7OmTZtGx44d8fX1pVevXqxfv77IOX744QfatWuHj48PTZo04bXXXivyfHZ2Ng8//DAxMTH4+PgQGxvLRx99VOSYFStW0K1bN/z9/enTpw9btmyp3DcuIpVKgUhEqpXx48fz2WefMWHCBDZs2MD999/P9ddfz7x58wqP+fe//81rr73GsmXLiIiIYOTIkeTm5gJmkLnyyiu5+uqrWbduHU8//TRPPPEEkyZNKnz9v/71L7766iveeustNm3axMSJEwkMDCxSx+OPP85rr73G8uXL8fLy4qabbqqS9y8ilUObu4pItZGdnU1YWBizZs2id+/ehY/fcsstZGZmcttttzFo0CC+/vprrrrqKgCOHTtGdHQ0kyZN4sorr+S6667j8OHDzJw5s/D1Dz30ENOmTWPDhg1s3bqVVq1a8ccffzB06NDTapg7dy6DBg1i1qxZDBkyBIDffvuNESNGcOLECXx9fSv5UxCRyqAWIhGpNhISEsjMzOTcc88lMDCw8PbZZ5+xffv2wuNODUthYWG0atWKTZs2AbBp0yb69u1b5Lx9+/Zl27ZtOBwOVq9ejc1mY8CAASXW0rFjx8L7UVFRACQlJVX4PYqIe3i5uwARkdJKT08HYNq0aTRs2LDIcz4+PkVCUXn5+fmV6jhvb+/C+xaLBTDHN4lI9aQWIhGpNtq2bYuPjw+JiYnExsYWucXExBQet3jx4sL7x48fZ+vWrbRp0waANm3asHDhwiLnXbhwIS1btsRms9GhQwecTmeRMUkiUvOphUhEqo2goCAefPBB7r//fpxOJ/369SMlJYWFCxcSHBxM48aNAXj22WepW7cu9evX5/HHHyc8PJyLL74YgP/7v/+je/fuPPfcc1x11VUsWrSId955h3fffReAJk2aMHr0aG666Sbeeust4uLi2L17N0lJSVx55ZXueusiUskUiESkWnnuueeIiIhg/Pjx7Nixg9DQULp06cJjjz1W2GX14osvcu+997Jt2zY6derEL7/8gt1uB6BLly58++23PPnkkzz33HNERUXx7LPPMmbMmMJrvPfeezz22GPceeedHD16lEaNGvHYY4+54+2KSBXRLDMRqTEKZoAdP36c0NBQd5cjItWIxhCJiIhIradAJCIiIrWeusxERESk1lMLkYiIiNR6CkQiIiJS6ykQiYiISK2nQCQiIiK1ngKRiIiI1HoKRCIiIlLrKRCJiIhIradAJCIiIrWeApGIiIjUev8PgV09zmDd4+oAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6uklEQVR4nO3ddXiUZ9bH8e/MxJ2QEMU9xbU4LbRAW+otdWrU6NZe2q1sXeh2t95Utu7uhRoUKRQNUtwlSAgh7snM8/7xZEIC8UwyCfl9rmsuJjOPnMzObs7e97nPbTEMw0BERESkBbO6OwARERERd1NCJCIiIi2eEiIRERFp8ZQQiYiISIunhEhERERaPCVEIiIi0uIpIRIREZEWTwmRiIiItHhKiERERKTFU0IkIieU3bt3Y7FYeO+992p97vz587FYLMyfP7/K49577z0sFgu7d++uU4wi0vQoIRIREZEWTwmRiIiItHhKiERERKTFU0IkIi71yCOPYLFY2Lp1K1dccQXBwcGEh4fz4IMPYhgGiYmJnHPOOQQFBREZGcmzzz573DWSk5O57rrriIiIwMfHh759+/L+++8fd1x6ejpXX301wcHBhISEMHXqVNLT0yuMa/PmzVx44YWEhobi4+PDoEGD+OGHH1z6u7/66qucdNJJeHt7Ex0dzfTp04+LZ9u2bVxwwQVERkbi4+NDbGwsl1xyCRkZGaXH/P7774wcOZKQkBACAgLo3r07999/v0tjFZHyPNwdgIicmKZMmULPnj15+umnmTVrFk888QShoaG88cYbnHrqqfz73//m448/ZsaMGQwePJjRo0cDkJeXx9ixY9m+fTu33norHTt25Msvv+Tqq68mPT2d22+/HQDDMDjnnHNYtGgRN910Ez179uTbb79l6tSpx8WyYcMGRowYQUxMDPfeey/+/v588cUXnHvuuXz99decd9559f59H3nkER599FHGjx/PzTffzJYtW3jttddYsWIFixcvxtPTk8LCQiZMmEBBQQH/+Mc/iIyMZP/+/fz000+kp6cTHBzMhg0bOOuss+jTpw+PPfYY3t7ebN++ncWLF9c7RhGpgiEi4kIPP/ywARg33HBD6WvFxcVGbGysYbFYjKeffrr09bS0NMPX19eYOnVq6WsvvPCCARgfffRR6WuFhYXGsGHDjICAACMzM9MwDMP47rvvDMB45plnyt1n1KhRBmC8++67pa+PGzfO6N27t5Gfn1/6msPhMIYPH2507dq19LV58+YZgDFv3rwqf8d3333XAIxdu3YZhmEYycnJhpeXl3H66acbdru99LhXXnnFAIx33nnHMAzDWL16tQEYX375ZaXXfv755w3AOHz4cJUxiIhracpMRBrE9ddfX/rcZrMxaNAgDMPguuuuK309JCSE7t27s3PnztLXZs+eTWRkJJdeemnpa56entx2221kZ2ezYMGC0uM8PDy4+eaby93nH//4R7k4UlNT+eOPP7j44ovJysoiJSWFlJQUjhw5woQJE9i2bRv79++v1+86Z84cCgsLueOOO7Baj/7P6rRp0wgKCmLWrFkABAcHA/Drr7+Sm5tb4bVCQkIA+P7773E4HPWKS0RqTgmRiDSIdu3alfs5ODgYHx8fwsLCjns9LS2t9Oc9e/bQtWvXcokFQM+ePUvfd/4bFRVFQEBAueO6d+9e7uft27djGAYPPvgg4eHh5R4PP/wwYNYs1YczpmPv7eXlRadOnUrf79ixI3fddRdvvfUWYWFhTJgwgfj4+HL1Q1OmTGHEiBFcf/31REREcMkll/DFF18oORJpYKohEpEGYbPZavQamPVADcWZSMyYMYMJEyZUeEyXLl0a7P7HevbZZ7n66qv5/vvv+e2337jtttuYOXMmS5cuJTY2Fl9fXxYuXMi8efOYNWsWv/zyC59//jmnnnoqv/32W6WfoYjUj0aIRKRJad++Pdu2bTtuRGTz5s2l7zv/PXjwINnZ2eWO27JlS7mfO3XqBJjTbuPHj6/wERgYWO+YK7p3YWEhu3btKn3fqXfv3vzrX/9i4cKF/Pnnn+zfv5/XX3+99H2r1cq4ceN47rnn2LhxI08++SR//PEH8+bNq1ecIlI5JUQi0qScccYZJCUl8fnnn5e+VlxczMsvv0xAQABjxowpPa64uJjXXnut9Di73c7LL79c7npt2rRh7NixvPHGGxw8ePC4+x0+fLjeMY8fPx4vLy9eeumlcqNdb7/9NhkZGZx55pkAZGZmUlxcXO7c3r17Y7VaKSgoAMyap2P169cPoPQYEXE9TZmJSJNyww038MYbb3D11VeTkJBAhw4d+Oqrr1i8eDEvvPBC6WjO5MmTGTFiBPfeey+7d+8mLi6Ob775plw9jlN8fDwjR46kd+/eTJs2jU6dOnHo0CGWLFnCvn37WLt2bb1iDg8P57777uPRRx9l4sSJnH322WzZsoVXX32VwYMHc8UVVwDwxx9/cOutt3LRRRfRrVs3iouL+fDDD7HZbFxwwQUAPPbYYyxcuJAzzzyT9u3bk5yczKuvvkpsbCwjR46sV5wiUjklRCLSpPj6+jJ//nzuvfde3n//fTIzM+nevTvvvvsuV199delxVquVH374gTvuuIOPPvoIi8XC2WefzbPPPkv//v3LXTMuLo6VK1fy6KOP8t5773HkyBHatGlD//79eeihh1wS9yOPPEJ4eDivvPIKd955J6Ghodxwww089dRTeHp6AtC3b18mTJjAjz/+yP79+/Hz86Nv3778/PPPnHzyyQCcffbZ7N69m3feeYeUlBTCwsIYM2YMjz76aOkqNRFxPYvRkNWMIiIiIs2AaohERESkxVNCJCIiIi2eEiIRERFp8ZQQiYiISIunhEhERERaPCVEIiIi0uKpD1EVHA4HBw4cIDAwEIvF4u5wREREpAYMwyArK4vo6OjjNoqujBKiKhw4cIC2bdu6OwwRERGpg8TERGJjY2t0rBKiCsTHxxMfH1+651BiYiJBQUFujkpERERqIjMzk7Zt29Zq42Z1qq5CZmYmwcHBZGRkKCESERFpJury91tF1SIiItLiKSESERGRFk8JkYiIiLR4Kqp2AbvdTlFRkbvDaJY8PT2x2WzuDkNERFo4JUT1YBgGSUlJpKenuzuUZi0kJITIyEj1ehIREbdRQlQPzmSoTZs2+Pn56Q96LRmGQW5uLsnJyQBERUW5OSIREWmplBDVkd1uL02GWrdu7e5wmi1fX18AkpOTadOmjabPRETELVRUXUfOmiE/Pz83R9L8OT9D1WGJiIi7KCGqJ02T1Z8+QxERcTclRCIiItLiKSGqQHx8PHFxcQwePNjdoTR5HTp04IUXXnB3GCIiIvWiouoKTJ8+nenTp5fuhXKiGTt2LP369XNJIrNixQr8/f3rH5SIiIgbKSFyF4cdivPBq+klE4ZhYLfb8fCo/usRHh7eCBGJiIg0LE2ZuUNRHiSthyM7wHA06q2vvvpqFixYwIsvvojFYsFisfDee+9hsVj4+eefGThwIN7e3ixatIgdO3ZwzjnnEBERQUBAAIMHD2bOnDnlrnfslJnFYuGtt97ivPPOw8/Pj65du/LDDz806u8oIiJSW0qIXMgwDHILi6t/ODzItVvILSwiNzOtZudU8zAMo0YxvvjiiwwbNoxp06Zx8OBBDh48SNu2bQG49957efrpp9m0aRN9+vQhOzubM844g7lz57J69WomTpzI5MmT2bt3b5X3ePTRR7n44ov5+++/OeOMM7j88stJTU2t9+crIiLSUDRl5kJ5RXbiHvq1lmclueTeGx+bgJ9X9f9xBgcH4+XlhZ+fH5GRkQBs3rwZgMcee4zTTjut9NjQ0FD69u1b+vPjjz/Ot99+yw8//MCtt95a6T2uvvpqLr30UgCeeuopXnrpJZYvX87EiRPr9LuJiIg0NI0QSalBgwaV+zk7O5sZM2bQs2dPQkJCCAgIYNOmTdWOEPXp06f0ub+/P0FBQaXbc4iIiDRFGiFyIV9PGxsfm1Czgw0DUraahdVBbcE/tN73rq9jV4vNmDGD33//nf/+97906dIFX19fLrzwQgoLC6u8jqenZ7mfLRYLDkfj1kqJiIjUhhIiF7JYLDWatioV1BqyDoI9A7zaNFxgx/Dy8sJut1d73OLFi7n66qs577zzAHPEaPfu3Q0cnYiISOPTlJk7+bYy/y3MBnvVoy6u1KFDB5YtW8bu3btJSUmpdPSma9eufPPNN6xZs4a1a9dy2WWXaaRHREROSEqI3MnD+2gfory0RrvtjBkzsNlsxMXFER4eXmlN0HPPPUerVq0YPnw4kydPZsKECQwYMKDR4hQREWksFqOm67VbIGen6oyMDIKCgsq9l5+fz65du+jYsSM+Pj51v0lOCmQkgocvtOlRz4ibJ5d9liIiIlT997syGiFyN58QwALFeWbDRhEREWl0SojczeYB3iXZayNOm4mIiMhRSoiaAr+S4uq8NHM5voiIiDQqJUQViI+PJy4ujsGDBzfODb2DwWI1V5oV5jTOPUVERKSUEqIKTJ8+nY0bN7JixYrGuaHVWlJLhKbNRERE3EAJUVPhW3baTL1+REREGpMSoqbCOxCsHmDYoSDL3dGIiIi0KEqImgqL5egoUW6qe2MRERFpYZQQNSW+JRu85meAo/q9xkRERMQ1lBA1JZ6+YPMGDMhPd3c09fLee+8REhLi7jBERERqRAlRU2KxgF/JKFGuVpuJiIg0FiVETY2zjqgwC+xF7o1FRESkhVBC1NR4eIOnn/m8AXsSORwOZs6cSceOHfH19aVv37589dVXOBwOYmNjee2118odv3r1aqxWK3v27AHgueeeo3fv3vj7+9O2bVtuueUWsrOzGyxeERGRhuTh7gBOKIYBRbn1v46HD+QegcwD4OVfs3M8/cwptxqaOXMmH330Ea+//jpdu3Zl4cKFXHHFFfz6669ceumlfPLJJ9x8882lx3/88ceMGDGC9u3bA2C1WnnppZfo2LEjO3fu5JZbbuGee+7h1VdfrdWvKiIi0hQoIXKlolx4Kto9976/5slTQUEBTz31FHPmzGHYsGEAdOrUiUWLFvHGG29wzz338Oyzz7J3717atWuHw+Hgs88+41//+lfpNe64447S5x06dOCJJ57gpptuUkIkIiLNkhKiFmj79u3k5uZy2mmnlXu9sLCQ/v37069fP3r27Mknn3zCvffey4IFC0hOTuaiiy4qPXbOnDnMnDmTzZs3k5mZSXFxMfn5+eTm5uLn59fYv5KIiEi9KCFyJU8/c6SmGoZhsPVQNoV2B+1b+xHk43n8QblpkLEXbF4Q3qP66TDPmichzlqfWbNmERMTU+49b29vAC6//PLShOiTTz5h4sSJtG7dGoDdu3dz1llncfPNN/Pkk08SGhrKokWLuO666ygsLFRCJCIizY4SIleyWGo0bWUB/AOtFOQUku3wJsjL9/iDPHwg74i5r1kNr1tTcXFxeHt7s3fvXsaMGVPhMZdddhn/+te/SEhI4KuvvuL1118vfS8hIQGHw8Gzzz6L1WrW5X/xxRcui09ERKSxKSFyk0BvD1JzCsnKL674AKsNfILNlWZ5qS5NiAIDA5kxYwZ33nknDoeDkSNHkpGRweLFiwkKCmLq1Kl06NCB4cOHc91112G32zn77LNLz+/SpQtFRUW8/PLLTJ48mcWLF5dLmERERJobLbt3E39vDyxAQbGdwuJKdrd3buWRl26OFLnQ448/zoMPPsjMmTPp2bMnEydOZNasWXTs2LH0mMsvv5y1a9dy3nnn4et7dBSrb9++PPfcc/z73/+mV69efPzxx8ycOdOl8YmIiDQmi2EYhruDaKoyMzMJDg4mIyODoKCgcu/l5+eza9cuOnbsiI+PT52uvz05m9zCYmJb+RLq7338AYYBh9aDoxhCO4NP0PHHnABc8VmKiIg4VfX3uzIaIapAfHw8cXFxDB48uEHvE+hjzlhWOm1msRztXJ2X2qCxiIiItGRKiCowffp0Nm7cyIoVKxr0PgHeZkKUXVBMpQN1zoQoPwMc9gaNR0REpKVSQuRGfl42bFYLdodBbmElyY6nn7n03nCYSZGIiIi4nBIiN7JYLOVGiSo5qExxdcPtbSYiItKSKSGqp/rWpAdUV0cER6fNCjLBXlSv+zVFqusXERF3U0JUR56eZnfp3Nz6beYa6G1eJ6/QTrGjkqX1nj5HO1Hnpdfrfk2R8zN0fqYiIiKNTY0Z68hmsxESEkJycjIAfn5+WGqx23xZnoadQrudtAwLgb5eFR9kDYDiHMhMAY/AuobdpBiGQW5uLsnJyYSEhGCz2dwdkoiItFBKiOohMjISoDQpqqv03CKyC4rJOWKjlV8lCZHDbiZDGJBWDNYT5z+6kJCQ0s9SRETEHU6cv6puYLFYiIqKok2bNhQV1b22Z9nOIzzyyzraBPrwybShlY80ff8CJC6FITfBkOvrfL+mxNPTUyNDIiLidkqIXMBms9Xrj/rgLhEczv2b/Vk5HMi20zk8oOIDu4+DTV/C2ndh1HRzBZqIiIjUm4qqmwA/Lw8GdzRXki3cerjyA3ueBR6+cGQ7HFjdSNGJiIic+JQQNRGju4YD1SRE3oHQ4wzz+bovGyEqERGRlkEJURMxqiQhWrozlYLiKrbo6H2x+e/6r7WVh4iIiIsoIWoiekYFEh7oTV6RnYTdVXSk7jLO7FydfQh2LWi8AEVERE5gSoiaCIvFwqiuYQAs2FbFtJnNE046z3y+/utGiExEROTEp4SoCRnTzVlHlFL1gXHnmP9u/RUq624tIiIiNaaEqAkZ0cUcIdp0MJPkrPzKD2w/HLyDIecw7E9opOhEREROXEqImpCwAG96xQQBsGhbFaNENk/oOt58vmV2I0QmIiJyYlNC1MTUaPk9QPeS5fdbfm7giERERE58SoiamNEldUR/bkvB4TAqP7DLOHM/s8ObIHVXI0UnIiJyYlJC1MQMaNcKfy8bR3IK2Xgws/IDfVtBu2Hm862/NE5wIiIiJyglRE2Ml4eVYZ1bA7CwquX3UGbaTHVEIiIi9aGEqAka3a2mdUQTzX93L4a8Kpo5ioiISJWUEDVBzsLqhD1p5BQUV35gaCcI7wGGHbbPbaToRERETjxKiJqg9q39aBvqS5HdYMmOI1Uf3H2S+a9Wm4mIiNSZEqImyGKxlI4S/VnTOqJtv4O9qIEjExEROTEpIapAfHw8cXFxDB482G0xlNYRVdWgESBmIPiHQ0EG7PmrESITERE58SghqsD06dPZuHEjK1ascFsMwzu3xma1sCslh8TU3MoPtNqg6wTzuabNRERE6kQJURMV6OPJgHYhACyodrWZs45oNhhVNHMUERGRCikhasJqXEfU+RSweUP6Hji8uREiExERObEoIWrCnHVEf20/QpHdUfmBXv7Qaaz5XE0aRUREak0JURPWKyaYVn6eZBUUsyYxveqDnU0aVUckIiJSa0qImjCb1cKILmFADbpWdytJiPathOzkBo5MRETkxKKEqImr8fL7oGiI7g8YsPXXhg9MRETkBKKEqIlzFlb/vS+dtJzCqg8u3exV02YiIiK1oYSoiYsM9qF7RCCGAYu2VzNK5Jw22/EHFOU1fHAiIiInCCVEzcCorjWsI4rsDUGxUJwHOxc0QmQiIiInBiVEzYCzjujPbSkYVTVetFiONmncqmkzERGRmlJC1AwM6RiKt4eVpMx8tiVnV31w6fL7X8BRRe8iERERKaWEqBnw8bQxtFNroAbTZh1GgVcAZCfBwdWNEJ2IiEjzp4SomRhdUkdU7b5mHt7QZZz5XKvNREREakQJUTPhrCNaviuV/CJ71QeXLr//pYGjEhEROTEoIWomurYJIDLIh4JiB8t3pVZz8OlgscKhdZC+t3ECFBERacaUEDUTFouF0d1quPzeLxTanmw+1yiRiIhItZQQNSOjujq38agmIYKjy++3zG7AiERERE4MSoiakZFdwrBYYOuhbJIy8qs+2FlHtHsR5Gc2fHAiIiLNmBKiZqSVvxd9YkOAGowShXWB1l3AUQQ75jZ8cCIiIs2YEqJmZkxNt/GAMtNmWn4vIiJSFSVEzcyokuX3i7anYHdUsY0HHJ022/or2IsbODIREZHmSwlRM9OvbQiB3h6k5xaxfn9G1QfHDgHfVpCfDolLGyU+ERGR5kgJUTPjabMyvIu5jUe1XattHtB1gvlc02YiIiKVUkLUDI3t3gaAuZuTqz+47PJ7o5opNhERkRZKCVEzNK6HmRCtTUznUGY1y++7jAObF6TuhJRtjRCdiIhI86OEqBlqE+RD/3YhAPy+8VDVB3sHQoeR5nM1aRQREamQEqJm6rS4CKAGCRGUWW2mbTxEREQqooSomTq9JCFasuMI2QXVLKnvNtH8N3EZ5KQ0cGQiIiLNjxKiZqpzeAAdw/wptDtYsKWa1WYhbSGyNxgO2PZb4wQoIiLSjCghaqYsFkvpKNFvG5OqP6GbNnsVERGpjBKiZsxZRzRvczJFdkfVBzuX32//A4qqWZkmIiLSwighasb6t2tFa38vMvOLWb4rteqDo/pBYBQU5cDuRY0Sn4iISHOhhKgZs1ktjOtp9iSqdrWZ1Xq0uFrTZiIiIuUoIWrmTouLBOC3DUkY1XWiLu1a/bO6VouIiJShhKiZG9U1DF9PGwcy8tlwILPqgzuOBk8/yDoAB9c2ToAiIiLNgBKiZs7H08aormFADabNPH2h86nmczVpFBERKaWE6ARQq67VqiMSERE5TotIiM477zxatWrFhRde6O5QGsS4nhFYLbDxYCb70nKrPrjbBMBiTplps1cRERGghSREt99+Ox988IG7w2gwof5eDOoQCtRglCigTUlSBMx/uoEjExERaR5aREI0duxYAgMD3R1Ggzq9NtNmpzxg/rv+a0ha34BRiYiINA9uT4gWLlzI5MmTiY6OxmKx8N133x13THx8PB06dMDHx4ehQ4eyfPnyxg+0iXPWES3blUpGblHVB0f1gbhzAQPmPdngsYmIiDR1bk+IcnJy6Nu3L/Hx8RW+//nnn3PXXXfx8MMPs2rVKvr27cuECRNITk4uPaZfv3706tXruMeBAwca69dwu/at/ekWEYDdYTBvS3L1J5zyAFisZnH1vpUNH6CIiEgT5uHuACZNmsSkSZMqff+5555j2rRpXHPNNQC8/vrrzJo1i3feeYd7770XgDVr1rgkloKCAgoKCkp/zsyspq9PE3N6XCRbD23nt41JnNs/puqDw7tB30thzcfwx+Nw1feNE6SIiEgT5PYRoqoUFhaSkJDA+PHjS1+zWq2MHz+eJUuWuPx+M2fOJDg4uPTRtm1bl9+jITmnzRZsOUxBsb36E8b8E6yesHM+7PqzYYMTERFpwpp0QpSSkoLdbiciIqLc6xERESQlJdX4OuPHj+eiiy5i9uzZxMbGVppM3XfffWRkZJQ+EhMT6xV/Y+sdE0xEkDc5hXb+2nGk+hNatYeBU83nfzyu7TxERKTFatIJkavMmTOHw4cPk5uby759+xg2bFiFx3l7exMUFFTu0ZxYrRbG96zFajOAUTPAwwcSl8G23xowOhERkaarSSdEYWFh2Gw2Dh0q/8f90KFDREZGuimqpu30k8zPZc7GQzgcNRjxCYqCIdPM5388Dg5HA0YnIiLSNDXphMjLy4uBAwcyd+7c0tccDgdz586tdJSnpTu5UygB3h4kZxWwdl96zU4acSd4BULSOth04hZXvzp/O8NmziUxtZpu3iIi0uK4PSHKzs5mzZo1pSvFdu3axZo1a9i7dy8Ad911F2+++Sbvv/8+mzZt4uabbyYnJ6d01ZmU5+1hY0z3cKAW02b+rWHYdPP5vKfAUYOC7GbowyV7OJiRz4Kth90dioiINDFuT4hWrlxJ//796d+/P2AmQP379+ehhx4CYMqUKfz3v//loYceol+/fqxZs4ZffvnluEJrOapWXaudhk0H31aQshX+/ryBInOf/el5HMzIB2BfWp6boxERkabG7QnR2LFjMQzjuMd7771Xesytt97Knj17KCgoYNmyZQwdOrRBY4qPjycuLo7Bgwc36H0aytjubfCwWtiWnM2ulJyaneQTBCPuMJ/PnwnFhQ0Wnzus3J1a+nx/uhIiEREpz+0JUVM0ffp0Nm7cyIoVK9wdSp0E+3pycqfWAPy+sebtCRhyAwREQPpeWPV+A0XnHgl70kqf709TDZGIiJSnhOgEdVpdps28/GD03ebzhf+FwhMncVi5+2hCpCkzERE5lhKiE9T4koQoYU8aR7ILqjm6jAFTIbgdZCfBircaKLrGlV1QzOako9uwJGcV1KyTt4iItBhKiE5QMSG+nBQdhMOAuZtrsNmrk4cXjP2n+XzRc5DfvPZzq8iavek4DPMz8fW0AXAgPd/NUYmISFOihOgEdnqc2aSxVtNmAH0ugdZdIS8Nlr7aAJE1rpV7zILqge1bEdvKF4D9mjYTEZEylBCdwJx1RH9uO0xeYS2miGwecMp95vO/XoHc1KqPb+KcBdWDOrQipiQh2qfCahERKUMJUQWa+7J7p55RgcSE+JJf5ODPbbVsRhh3HkT0hsIsWPxCg8TXGOwOg9V704FjRoi09F5ERMpQQlSB5r7s3slisdRttRmA1Qqn/st8vux/kFWL5ftNyOakTLILignw9qBHZBAxIX6AVpqJiEh5SohOcKefZCZEczcnY6/JZq9ldZsAsYOhOM9cht8MOafL+rcLwWa1qIZIREQqpIToBDekQyjBvp6k5hSWa05YIxYLnPqg+TzhPUjb4/L4Gprzdx7YvhWAaohERKRCSohOcB42K6f2aAPUsmu1U6cx0HEMOIpgwTMujq7hORsyOhMi5whRUmY+RXaH2+ISEZGmRQlRC1C2jsgwajltBjDO3GiXtZ9AyjYXRtawkjLy2Z+eh9UC/duZCVGYvzdeHlYchvm+iIgIKCFqEUZ3C8fLw8ruI7lsT86u/QViB0G3SWA4YN5Trg+wgTj7D/WIDCLA2wMAq9VCTIhz2kx1RCIiYlJC1AIEeHsworO52etvtV1t5nTqA+a/G76Bg3+7KLKG5ZwuG9ShVbnXtfReRESOpYSohTitpGt1nROiyN5w0vnm83lPuiiqhnVsQbXT0REiFVaLiIhJCVEFTpTGjGWN72kWVq9NTOdQZh1rZ055ACw22PoLJDbtHk25hcVsPGjuwzaoQ2i597T0XkREjqWEqAInSmPGstoE+dC/XQgAczbVcZQorAv0u9R8/ss/wV7smuAawJrEdOwOg6hgn9IRIaejS++VEImIiEkJUQtS567VZZ3yAHgHwf4EWPKKiyJzvYSS+qEBx0yXAcS2MrtVq4ZIRESclBC1IKeXJER/bT9CdkEdR3eComHiTPP5vKfg8BYXRedaK50bulaQEDlHjA6k59W+e7eIiJyQlBC1IJ3DA+gY5k+h3cGCLbXc7LWsfpdD19PBXgDf3dzkps4cDoNVe50JUehx70cE+eBhtVDsMEjOUi8iERFRQtSiWCyW0lGiOnWtPnohmPwieAeXTJ297KIIXWNrchZZ+cX4ednoGRV43Ps2q4WoEB9AdUQiImLycHcA0rhOi4vgjYU7+WVDEhe/vsR80QIWzDzH/NGCxXL8z05eNis3junMkIkz4ftbzKmzbpOgTY9G/V0q4+w/1K9tCB62inP+mBBfElPz2J+Wx+AOjRiciIg0SUqIWpj+7VoRE+LL/vQ8lu9OrfN1MvOL+PLGy2Dj97DtV3Pq7Lrfweb+r9SqKuqHnMzC6lQVVouICKCEqMWxWS18edMw1iam4ywnNgwwMHBuc2ZAuT3Pjr5ukJ5bxKM/bmTtvgwK7A68J78A8SfDgVXw10sw6q7G/HUq5CyoHtjh+PohJzVnFBGRspQQtUDRIb5EH9Obp6YMw+CVP7ZzJKeQDQcyGdAuGiY9bY4QzZ8J3SdBm54ujrjmkrPy2Zuai8VCad+lisSqF5GIiJShouoKnIidql3FYrGU9vZx9vqh76XQdQLYC92+6swZU/eIQIJ8PCs9LkbdqkVEpAwlRBU4ETtVu5JzbzDnbvKlq858guHAavjrRbfFtrKS/cuO1bZMc8ay04MiItIyKSGSWnMWKyfsSTuaTARFwcR/m8/nPw2HNrolttKGjB2qTogig32wWqCg2MHh7ILGCE1ERJowJURSa71igvGyWUnJLmRvapmi5L6XQLeJ5tTZ97c0+tRZfpGdDfszgIobMpblabMSGWT2ItK0mYiIKCGSWvPxtNE7Nhg42vMHMKfOznrh6NTZ4hcaNa61iekUOwzaBHqXFk1XRZu8ioiIkxIiqZNBpXVEaeXfCIqCSf8xnzfy1FnZ6TJL2U6SldAmryIi4qSESOqkdKXZngqaO/a5GLqfAY6iklVnRY0SU0JJQjSgXdX1Q07qRSQiIk5KiKROnKu4th7KJiP3mITHYoGzngefEDi4plGmzhwOozQhGlRFQ8aytPReRESclBBJnYQFeNMxzB+AVYlpxx8QGAlnOKfO/g2HNjRoPDsOZ5ORV4SPp5WTooNqdI6zzkhTZiIiooRI6mzgsQ0aj9X7Iuh+ZqNMnTnrh/rGhuBZyYauxzo6ZaZeRCIiLZ0SIqmzQcc2aDyWc+rMtxUcXAuLXmiwWBJq2H+oLOf2JbmFdtKPnfYTEZEWRQlRBbR1R804R4jWJKZTZHdUfFBgxNFVZwv+DUnrGySW0oSomv5DZfl42ggP9Aa09F5EpKVTQlQBbd1RM53DAwj29SS/yMGmg5mVH9j7QuhxVoNNnaVkF7ArJQeo+Qozp6N1RFppJiLSkikhkjqzWi1H9zWrrI4IzKmzM58zp86S/oZFz7s0DufoUNc2AQT7Vb6ha0XK1hGJiEjLpYRI6mVgmX3NqhQYAWf813y+4Bmzk7WL1KV+yMnZnFEJkYhIy6aESOplYJnC6mpXavW6AOLOMafOvrwG8quYZquFlbtTS2Kpef2Qk7bvEBERUEIk9dQ3NgQPq4VDmQXVJxUWC0x+EULaQdou+PE2qOdy9/wiO+v3m4mVc9VbbagXkYiIgBIiqSdfLxsnxZgbva7aW820GZh1RBe+C1YP2PAtrHynXvdfvz+DQruDsAAv2rf2q/X5sdq+Q0REUEIkLjCoJoXVZcUOgvGPms9/uQ8O/l3nezsbMg5sX7MNXY/lnDLLyi8mM1+9iEREWiolRFJvRxs01jAhAhg2HbpNAnsBfHk1FGTV6d7OJKw2/YfK8vPyINTfC9CeZiIiLZkSIqk3Z2H1lqRMsmo6ymKxwLmvQlAspO6An+6sdT2RYRil03QD6lA/5KSl9yIiooRI6q1NkA9tQ31xGGbX6hrzC4UL3wGLDdZ9Cas/rNV9d6bkkJpTiJeHlV4xNdvQtSKlhdWqIxIRabGUEIlLOKesalxH5NRuKIx70Hw++x44tLHGpyaUbugajLeHrXb3LUMjRCIiooRIXKLGDRorMvx26HIaFOeZ9USFOTU6LWG3s6C6bvVDTlp6LyIiSojEJZwJ0eq9aRRXttFrZaxWOO91CIyClC0wa0aNTlu5x2zIWJf+Q2XFqFu1iEiLV6eE6P3332fWrFmlP99zzz2EhIQwfPhw9uzZ47LgpPnoFhFIoLcHOYV2NifVYcWYfxhc8DZYrLD2E1jzSZWHp+UUsuOwOZI0sJ4JkUaIRESkTgnRU089ha+v+UdkyZIlxMfH88wzzxAWFsadd97p0gDdIT4+nri4OAYPHuzuUJoNm9VC/5LEpEYNGivSYQSMvd98Puv/IHlzpYc6p+Y6h/vTqmTZfF05exGl5hSSW1hcr2uJiEjzVKeEKDExkS5dugDw3XffccEFF3DDDTcwc+ZM/vzzT5cG6A7Tp09n48aNrFixwt2hNCu1btBYkVF3QaexUJRbUk9U8cqvsg0Z6yvIx5MgHw9AvYhERFqqOiVEAQEBHDlyBIDffvuN0047DQAfHx/y8vQHpaUaVJ/CaierDc5/EwIi4PAm+OWfFR6WUFo/VL+CaifVEYmItGx1SohOO+00rr/+eq6//nq2bt3KGWecAcCGDRvo0KGDK+OTZqRv2xBsVgv70/M4mFGPxCKgjZkUYYFVH8DfX5Z7u7DYwdp9GQAM7FD/ESIos/RedUQiIi1SnRKi+Ph4hg0bxuHDh/n6669p3bo1AAkJCVx66aUuDVCaD39vD3pGBQL1nDYD6DQGxpSMDv10B6RsL31r/YEMCosdhPp70SnMv373KXG0OaMSIhGRlsijLieFhITwyiuvHPf6o48+Wu+ApHkb1D6U9fszSdiTxuS+0fW72Jh7YM9i2P2nWU90/Rzw9CntPzSgXd02dK2IMyHSrvciIi1TnUaIfvnlFxYtWlT6c3x8PP369eOyyy4jLa2eIwPSrNWrQeOxnPVEfmFwaB38eh9Qpv+Qi6bLQEvvRURaujolRHfffTeZmZkArFu3jv/7v//jjDPOYNeuXdx1110uDVCaF2dCtPFgJjkFLljCHhQF5/8PsMDKdzDWf1OabNW3IWNZMSEqqhYRacnqlBDt2rWLuLg4AL7++mvOOussnnrqKeLj4/n5559dGqA0L9EhvkQH+2B3GKytzUavVekyzlyODxjf/wO/nES8bFZ6xQS75vocHSE6nFVAfpHdZdcVEZHmoU4JkZeXF7m5Zq3FnDlzOP300wEIDQ0tHTmSlmtgB3MpvEumzZzG3g/thmEtyuYVz5foF+2Lj2fdN3Q9VoifJ35e5vUOaNpMRKTFqVNCNHLkSO666y4ef/xxli9fzplnngnA1q1biY2NdWmA0vyUNmh0ZUJk84AL3ibXFkQf6y7u8PjKddcGLBaL6ohERFqwOiVEr7zyCh4eHnz11Ve89tprxMTEAPDzzz8zceJElwYozc/AMlt4OByG6y4cHMN/vKcDMOzgR7BzgeuuTZleRKojEhFpceq07L5du3b89NNPx73+/PPP1zsgaf56RAbi52UjK7+YrclZ9IgMcsl1M3KLeDe1N109TuEyj3nw7Y1w81/g55pu1bEl3arVi0hEpOWpU0IEYLfb+e6779i0aRMAJ510EmeffTY2m+vqOqR58rBZ6d8uhMXbj7Byd5rLEqJZ6w4C8GHwTVzmsw+ObIMf/gFTPgIX9COKUS8iEZEWq05TZtu3b6dnz55cddVVfPPNN3zzzTdcccUVnHTSSezYscPVMUozNLBkj7FVLqojSs0p5JlfNwNwwcnd4MK3weoJm3+CVe+75B7OKTPVEImItDx1Sohuu+02OnfuTGJiIqtWrWLVqlXs3buXjh07ctttt7k6RmmGXF1Y/e+fN5OeW0SPyECmDu8AUX1h3EPmm7/cB4e31vse2r5DRKTlqlNCtGDBAp555hlCQ4/WbrRu3Zqnn36aBQtcW+gqzVO/diFYLLA3NZfkrPx6XWvl7lQ+X5kIwBPn9sLTVvK1HXYrdBoLRbnw9XVQXFCv+zinzJIy8ymyO+p1LRERaV7qlBB5e3uTlZV13OvZ2dl4eXnVOyhp/oJ8POkeYW70mlCPjV6L7A7+9d16AKYMasugDmUKqK1WOPd18A2FpL/hj8frFXN4gDfeHlYcBiRl1C+JExGR5qVOCdFZZ53FDTfcwLJlyzAMA8MwWLp0KTfddBNnn322q2NsdPHx8cTFxTF48GB3h9KsOfcaq0+Dxvf/2s3mpCxC/Dz556Qexx8QFAXnlGw0/NfLsGNene9lsVhK64gSVVgtItKi1Ckheumll+jcuTPDhg3Dx8cHHx8fhg8fTpcuXXjhhRdcHGLjmz59Ohs3bmTFihXuDqVZG1RSWF3XOqKDGXk8/7tZG3TfpB6E+lcy+tjjTBh0rfn825sg50id7gdHp81URyQi0rLUadl9SEgI33//Pdu3by9ddt+zZ0+6dOni0uCkeXM2aNxwIIP8Inutt9p47MeN5BTaGdi+FRcNbFv1wac/CbsXQ8oW+OFWuOSTOi3Fj22l5owiIi1RjROi6naxnzfv6FTFc889V/eI5IQR28qXNoHeJGcVsDYxnaGdWtf43Hlbkvl5fRI2q4Unzu2F1VpNcuPlBxe8BW+Ngy2zYeU7MPi6OsRc0pxRS+9FRFqUGidEq1evrtFxFhc0yJMTg8ViYVCHVsxel8TKPWk1Tojyi+w8/P0GAK4d0YGeUTVs7BjVB8Y/Ar/eD78+AO1HQJsK6o6qcHT7DtUQiYi0JDVOiMqOAInU1MD2ocxel1SrBo2vztvO3tRcIoN8uH18t9rdcOjNsH0O7PgDvr4eps0FD+8an64NXkVEWqY6FVWL1JSzQWNCDTd63Xk4m9cX7ATg4clxBHjXsszNaoVzXwO/1nBoHcx5tFanO4uqD6bnY3flxrQiItKkKSGSBhUXHYSPp5X03CJ2pmRXeaxhGDz4/XoK7Q7Gdg9nYq/Iut00MBLOedV8vjQets+t8altAn3wsFoodhgcylQvIhGRlkIJkTQoT5uVvrEhAKyspkHjj38fZPH2I3h7WHns7F71q0frPhEGX28+//YmyD5co9NsVgvR2tNMRKTFUUIkDa4mDRoz84t4/KeNAEw/pQvtWvvV/8anPwHhPSAn2VyKb9RsCkyF1SIiLY8SImlwzgaNVSVEz/22lcNZBXQK8+fGMZ1cc2NPX7jgbbB5w9ZfYMVbNTpNm7yKiLQ8SoikwQ1oZ44Q7UzJ4Uj28Ruwrt+fwQdLdgPw+Lm98PaoXQPHKkX2gtNKCqt/+xckb6r2lBg1ZxQRaXGUEEmDC/bzpGubAOD4USK7w+CBb9fhMODsvtGM6BLm+gCG3gRdxkNxPnx1HeSlV3m4mjOKiLQ8SoikUVRWR/Tp8r2s3ZdBoLcH/zqzZ8Pc3GIxl+L7h0PyBogfAuu/rrSm6GgNkRIiEZGWQgmRNIqBFdQRHc4q4JlfNgPwf6d3o02QT8MFENAGLvscWneB7EPw1bXw0QWQuuu4Q8s2Z6xJ7yQREWn+lBBJo3A2aPx7fwYFxXYAZs7eRGZ+Mb1igrhyWIeGDyJmINz8F4y9D2xesGMuvHoy/PksFBeWHhYZ7IPVAoXFDlIqqHkSEZETjxIiaRTtW/sRFuBFYbGD9fszWLLjCN+s3o/FAk+c2xtbdZu3uoqHN4y910yMOowy64rmPgZvjIY9SwCzd1JkyWjVPtURiYi0CEqIpFFYLJbS1WZLd6by4PfrAbhsSDv6tQ1p/IDCusLUH+G8N8xtPg5vgncnwg//gNzU0sJq1RGJiLQMSoik0TgLq1/5Yzvbk7MJC/Dingm1243epSwW6HsJ3LoS+l9pvrbqA3hlMGdb/wQM9SISEWkhlBBJo3EWVucVmTVE95/Rk2A/T3eGZPILhXNegWt+hrDukJvCFQee5CPPp8g/tMXd0YmISCNQQiSNpldMEF4e5lduaMdQzusf4+aIjtF+ONy0CE59kGKrNyNtG7h101Ww4BkoVnG1iMiJTAmRNBpvDxtn942mtb8XT55Xz81bG4qHF4yewZqzfmahvTeeFMG8J+G1EbB7kbujExGRBmIxjBrueNkCZWZmEhwcTEZGBkFBQe4O54RhdxiNt6qsjnal5HDKf+dxgdcy/hv4GZacZPONoTfDxJlm/ZGIiDRJdfn7rREiaXRNPRkCiA7xASx8XXgy6df+BYOuNd9Y9hrMfdStsYmIiOspIRKpgLeHjTaB3gAk5nnCWc/D2S+bby56Hv56xY3RiYiIqykhEqlE6RYezqX3A66CcQ+bz397ANZ+5qbIRETE1ZQQVSA+Pp64uDgGDx7s7lDEjWIqas448k44ebr5/PvpsPU3N0QmIiKupoSoAtOnT2fjxo2sWLHC3aGIGzl3vd9fdvsOiwVOfwL6TAFHMXxxFSQud1OEIiLiKkqIRCrhnDLbl5Zb/g2rFc6Jhy6nQXEefHwRJG9yQ4QiIuIqSohEKhFTmhBVsH2HzRMufh9iB0N+Onx4PqQnNm6AIiLiMkqIRCrRtlUFU2ZlefnDZV+Y231kHYAPz4OcI40YoYiIuIoSIpFKRJfUEGXlF5ORV1TxQX6hcOU3EBQLR7bBxxdCQXYjRikiIq6ghEikEn5eHrT29wKoetf74Fi48lvwDYUDq+CLK6G4sJGiFBERV1BCJFKFmMoKq48V3g0u/xI8/WDHH/DdTeBwNEKEIiLiCkqIRKoQW10dUbmDB8GUD8HqAeu/hl/uBW0VKCLSLCghEqmCsxdRhSvNKtJlPJz3hvl8+Rvw538bKLKayyu08+PaA+QX2d0diohIk6WESKQKsSXdqqusITpW7wth4r/N5388ASvfbYDIau6537fwj09X8+Qs9UoSEamMEiKRKpSOEKVXU0N0rJNvglEzzOez7oKNP7g4sppxOAx+WHsAgM9XJpKcle+WOEREmjolRCJViDl2g9faOPVfMGAqGA74+jrYtdDF0VVvdWIahzILACgsdvD2ol2NHoOISHOghEikCs6EKC23iJyC4tqdbLHAWc9Dj7PAXgifXgabZzVAlJWbvS4JgLah5u/x8dK9lfdUEhFpwZQQiVQhyMeTIB8PoIYrzY5ltcEFb0OHUVCYBZ9dZiZGGftcHOnxDMPg53UHAXjgjJ50jwgku6CYj5buafB7i4g0N0qIRKpRp8Lqsjx9zB5FI+80l+RvmQWvDIG/XgF7LUedamHtvgwOZOTj52VjbPc23Dy2MwDvLNpFXqFWnImIlKWESKQaNW7OWBVPXxj/CNz4J7Q9GYpy4LcH4M2xsC/BJXEeyzk6dGqPNvh42jirTxRtQ305klPIFyu1Ea2ISFlKiESq4WzOuK8uU2bHioiDa36GyS+BTwgkrYO3xsGs/4P8jPpfv4RhGMxebyZEZ/SOAsDDZuWG0eYo0f8W7qTIrk7aIiJOSohEqlHr5ozVsVph4FS4dSX0uQQwYMVb8Mpgs8O1C7pbbziQSWJqHj6eVsZ2Dy99/aKBsYQFeLE/PY8f1hyo931ERE4USohEqlHvGqLKBITD+W/AVT9A6y6QfQi+uhY+ugBS67c8fnbJdNkp3dvg5+VR+rqPp41rR3YE4LUFO3A4tLWIiAgoIRKpVumUmasTIqdOY+Dmv2DsfWDzgh1z4dWTYeF/obiw1pczDKM0IZpUMl1W1hUntyfQ24PtydnM2XSo3uGLiJwIlBCJVMOZEKVkF9R5P7CcgmK2Hsqq/AAPbxh7L9y8BDqOgeJ8+ONxeGMU7PmrVvfanJTF7iO5eHlYObVHm+PeD/Lx5Mph7QF4df4ODG1AKyKihEikOsG+nvh72YDa9SJyOAz+2p7CXV+sYfCTczj9+YV8lVBN/6GwLnDV93D+m+AfDoc3w7uT4LvpkJtao/s6V5eN6RZOgLdHhcdcM6Ij3h5W1iSms2TnkRr/TiIiJyolRCLVsFgstdrCY+fhbP7z62ZG/vsPLntrGd+s2k9uSd+fV+dvr75ux2KBPhfDrStg4NXma2s+gpcHmMXXjqpHqWavN7tTn9E7stJjwgO9uXhQWwBem7+j2t9JROREp4RIpAachdWV1RFl5Bbx0dI9nPfqYk59dgHx83ZwICOfQB8PLh3Sjo+vH0qgjwc7D+cwf2tyzW7q2womvwjX/gZtToK8NHN5/hujYfeiCk/ZdiiL7cnZeNosjOsZUeXlbxjdCZvVwp/bUli3z3VL/kVEmqOKx9NFpBzn0vv9ZXa9L7Y7WLjtMF8n7Of3TYcoLDb7+lgt5nTV+QNiOS0uAh9Pc7rtksFtefPPXby9aBen9qg6WSmn3VC4cSEkvAt/PAGH1sN7Z0LcuXD64xDSrvRQ595lo7qGE+TjWeVl24b6cXbfaL5dvZ/XFmzn1csH1jwmEZETjBIikRqILTNltulgJl8n7OO7NQdIyS4oPaZHZCAXDIjlnP7RtAn0Oe4aU4d34O1Fu1i8/QibDmbSMyqo5gHYPGDINOh1gZkUJbwLG7+Drb+YW4IMvw28/Pi5pBnjpF6VT5eVdfPYzny7ej8/r09ix+FsOocH1DwmEZETiKbMRGrAWUP0498HmfTin7y1aBcp2QW09vfimhEd+OkfI/n59lFMG92pwmQIzGm3Sb3MZfDvLKpjnyG/UDjrOXPEqP1IczXa/JkQP4SkJZ+yOSkTD6uF0+JqNgLVLSKQ8T0jMAx4Y4FqiUSk5VJCJFIDncLMkRO7w8DLZmVSr0jeumoQS+8fx8OTT6JXTDAWi6Xa6zibIn6/5gCHswqqOboKkb3h6p/gwnchKBYyEon89SY+9XySKe0yCfHzqvGlnJu+frt6PwczGqjXkohIE6eESKQG4qKDePr83jxxbi+WPzCO164YyPi4CDxttfuv0MD2rejXNoRCu4OPlu6pX1AWC/Q631yNNuZeCvBimG0jjyfdbBZf13CZ/sD2rRjaMZQiu8GbC+vXIftEciS7gJW7a/YZikjzp4RIpIYuGdKOK05uX6vRl4pcVzJK9NHSPXVu9FiOlx97+tzGqfn/YbZjKFYc5vL8lwfA8jfBXlztJW45pQsAny7fS2rOMd2xW2DjxpTsAs5+ZTEXvr5ESZFIC6GiapFGNqlXJNHBPhzIyOeHNQe4eHDbel/z5/VJ7Cecj9s9xhnjCuHneyF5A8yeASvfPboaLT8T8tOhINN8XvLv6PwM3grajj0vg+z//YdQvyLIzzh6TPQAuOQTc/+1E1xhsYNbPlpV2oTz942HGNQh1M1RiUhDU0Ik0sg8bFamDu/AzJ83887iXVw0KLZG9UdVcXanntQrCjq2L79MP3kDfHR+ledbgPEANiCj5FHWvuXw6SUw9Ufw8qtXrE3dIz9uYHmZUaEFWw9z3xk93RiRiDQGJUQibnDJkHa8OHcbm5OyWLz9CCO7htX5WvvSclm7LwOLBSacVLLcvuwy/XlPwppPwWoDn2DwDgKfoGP+DcbhHcQLi5LYneXBGYO7MXFgd/P4whz4+ELYvxK+mQYXf2Be6wT04dI9fLJsLxYL/OfCvtz91Vo2J2VxKDOfiKCKVw+KyIlBCZGIGwT7enLxoLa899du3l60s14J0S8lW3UM6RBKeKB3+Tf9QuHMZ81HNaxAtPdeXvpmHcs2eXPK5MF4e5QkPpd8Ch+cDZt/gt8fgglP1jnepmrJjiM8+sMGAO6e0J0LB8bywZLd/L0vg4VbD3PRoPpPbYpI06WiahE3uWZEBywWmLflMNuTs+t8ndkl02Vn9I6qd0znDYghIsibQ5kFfLtq/9E32g+Dc18zny95xSzWPoEkpuZyy8cJFDsMzu4bzc1jzFYEo7uaNVMLt6W4MzwRaQRKiETcpH1rf8aX7Df27uK6LXc/mJHHqr3pWCwwsYbdqavi7WFj2qhOALyxcCf2shvR9r4Qxj1kPv/5HtjyS73v1xTkFBQz7YOVpOUW0TsmmGcu7FNa0zW6m5kQLdp2uPxnISInHCVEIm7kXIL/9ap9pB273L0GnNNlg9q3clmNyyVD2hHs68mulJzS65caeRf0vxIMB3x1DRxY7ZJ7uovDYfB/X5h1QmEB3vzvqoGle88B9G8XQoC3B2m5Razfrw1wRU5kSohE3Ghox1BOig4iv8jBJ8v31vr8n0s2c3VuCeIKAd4eTB3eAYBX52/HKNuHyGKBs56HTqdAUS58MgXSE11278b20h/b+GVDEl42K29cOYCoYN9y73varAzv3BqAhVsPuyNEEWkkJ3xClJiYyNixY4mLi6NPnz58+eWX7g5JpJTFYikdJfpgyW4Kix01Pjc5M58Ve8zl4a6YLivrmuEd8PW0seFA5vH1MzZPuPh9aHMSZB+CTy42exY1M7+sP8gLc7YB8MS5vRjYvuJeQ85ps4XblBCJnMhO+ITIw8ODF154gY0bN/Lbb79xxx13kJOT4+6wREqd1SeaNoFmIbOzQLomft2QhGGY0zrRIb7Vn1ALrfy9uHRIOwBenbf9+AN8guHyLyAgEpI3whdXgb3IpTE0pE0HM7nz87WAWdxeVXPMMSUJ0aq96WTmN5/fUURq54RPiKKioujXrx8AkZGRhIWFkZqqVvzSdHh5WLlqWHsA3lq0s/wUVRVml0yXneHC6bKypo3uiKfNwrJdqSTsSTv+gOBYMyny9Ied8+GnO5rFNh+pOYVM+2AleUV2RnYJ44Fqmi62DfWjY5g/dofBX9uPNFKUItLY3J4QLVy4kMmTJxMdHY3FYuG777477pj4+Hg6dOiAj48PQ4cOZfny5XW6V0JCAna7nbZt1U9EmpbLhrbH28PK+v2ZLN9VfcKekl3Asl3mH2dXT5c5RQX7cm6/GABem1/BKBFAVF+46F2wWGH1R/Bn9f2O3KnI7uCWjxPYl5ZH+9Z+vHJZfzxqsEHv6JI+UZo2EzlxuT0hysnJoW/fvsTHx1f4/ueff85dd93Fww8/zKpVq+jbty8TJkwgOTm59Jh+/frRq1ev4x4HDhwoPSY1NZWrrrqK//3vfw3+O4nUVqi/F+cPiAXg7UXVL8H/bcMhHAb0iQ2mbWjDbaVx09jOWCwwZ1MyL8/dVvFB3SbApGfM5388Dn833Tq9x37cyNKdqfh72XjzqkE13qi3tI5o6+Eaj+CJSPPi9k7VkyZNYtKkSZW+/9xzzzFt2jSuueYaAF5//XVmzZrFO++8w7333gvAmjVrqrxHQUEB5557Lvfeey/Dhw+v8riCgoLSnzMzM2vxm4jUz3UjO/Dp8r38vukQe47k0L61f6XH/ry+zN5lDahzeAAzTu/Of37dwrO/byW/2M6M07sfv/fakGmQttts2vj9LRAcA+0r/++aO3y8bA8fLt2DxQIvXNKfbhGBNT735E6t8bRZ2JeWx66UHDqFBzRgpCLiDm4fIapKYWEhCQkJjB8/vvQ1q9XK+PHjWbJkSY2uYRgGV199NaeeeipXXnlllcfOnDmT4ODg0oem1qQxdWkTyJhu4RgGvLt4d6XHpeUU8tcOc7psUgNNl5U1/ZQupXU28fN28NhPGyseJTntceh5NtgL4bPLIKWSESU3WLbzCA9/b27L8X+ndeO0uIhane/v7cHgkh3vtfxe5MTUpBOilJQU7HY7ERHl/8crIiKCpKSkSs4qb/HixXz++ed899139OvXj379+rFu3boKj73vvvvIyMgofSQmNt/+KtI8OZfgf7kysdIVTb9vPITdYRAXFUSHsMpHkVxp2uhOPH7OSYCZrN3/7Xocx3Zutlrh/P9B7GDISzM3hM1x/5YX+9JyufnjVRQ7DM7qE8X0U7rU6TpHl9+7/3cSEddr0gmRK4wcORKHw8GaNWtKH717967wWG9vb4KCgso9RBrTqK5hdIsIIKfQzufLK07IZ6937l3W8KNDZV05rEPJthbw6fK9zPhyLcX2Y/omefqaG8GGtDen0D69BIryGjXOsnILi5n2QQKpOYWcFB3Efy7se/x0Xw059zVbsuMIBcV2V4Z5QklMzWV/uvv+MxepqyadEIWFhWGz2Th06FC51w8dOkRkZOP+MRBpDBaLhWtHmKNE7/21+7iEIyO3iMXbzRGKSS7YzLW2Lh7Ulhem9MNmtfDN6v3c/tkaio5NigLC4fKvwCcE9q2Ab28ER80bTrqKYRjc/eXfbDqYSViAF/+7ahC+XrbqT6xEz6hAwgO9ySuyk7C7gjYEwpHsAs548U/OeWWxkkZpdpp0QuTl5cXAgQOZO3du6WsOh4O5c+cybNgwN0Ym0nDO7R9DqL8X+9Pz+HVD+f8zMGfTIYrsBt0jAunspsLec/rF8OrlA/C0WZi17iA3f5RAftExf/zCu8Eln4DNCzZ+D2+eAsvfhJzG6+Pz+YpEZq07iKfNwmtXDCSmns0rLRYLo0qW3y/Q8vsKfb1qH1kFxaRkF7DpYJa7wxGpFbcnRNnZ2aVTWQC7du1izZo17N1r7ut011138eabb/L++++zadMmbr75ZnJyckpXnYmcaHw8bVwx1OwS/faineXeK11d1sjTZceacFIkb141CG8PK3M2JZuNDguPSYo6jIBzXwOrJxxcA7NnwLPd4bPLYeMPUFxQ4bVdITO/iP/8ugWAuyd0Ly2Irq8xpcvvVUd0LMMw+LTMNO+avRpFk+bF7QnRypUr6d+/P/379wfMBKh///489NBDAEyZMoX//ve/PPTQQ/Tr1481a9bwyy+/HFdoLXIiuWJYe7xsVlbtTWd1yR+WrPyi0j/EZ7hhuuxYY7u34d2rB+PnZePPbSlMfXc52QXF5Q/qfSHctQkmPm02cXQUweaf4Isr4b/d4Ke7IHGFyztcv/LHdo7kFNIp3J9rSqYgXWFklzAsFnPrj+SsfJdd90SwdGcqu1KObou0OjHdfcGI1IHbE6KxY8diGMZxj/fee6/0mFtvvZU9e/ZQUFDAsmXLGDp0aIPGFB8fT1xcHIMHD27Q+4hUpk2gD5P7RgNHGzX+sTmZQruDzuH+dG3TNPrgDO8SxofXDSHQ24Plu1K54q1lZOQdszouIBxOvhluXAi3LIURd0BgNOSnw8q34e3x8PJAWPAMpO2pd0y7UnJ4d7H5mT14VhyeNehEXVOtA7zpFR0MwJ8aJSrn0+XmqH6ncHPl4xolRNLMuD0haoqmT5/Oxo0bWbFihbtDkRbMuQT/5/VJ7E/PK9349YzeUXVeKdUQBrYP5ZNpJxPi58maxHQue3MpqTmFFR/cpiec9ijcuR6u/A76XAKefpC6A+Y9CS/2gXfPgFUfQH5GneJ5ctZGLPZCzuzizSlRdpePPo3upm08jpWaU8gv681WKE+c0wuAPUdyK/8eiDRBbu9ULSIVi4sOYnjn1vy14wivzd/O/C3mH+CG7k5dF71jg/l02slc+fYyNhzI5JL/LeGj64fSJtCn4hOsNuh8ivkoeNacRlv7KexcAHsWm4/Zd0OPM6HjGLPeqDALCrKhMLvk3ywozCn3WlFeJq8WZOHlY4d9wHNAu+Fw4dsQFO2S33V013Di5+3gz20pOBwGVmvTSU7d5ZtV+yi0O+gTG8zwLmF0Cvdn5+Ec1iamc0qPNu4OT6RGlBCJNGHXjezIXzuO8NFSczqiQ2s/ekbVfMuJxtQzKojPbhjG5W8tZeuhbKa8sZSPrx9KdHWru7wDoO8l5iNjP6z7AtZ+Boc3w/qvzUcNeQKUy08ssPcveH0UXPAmdD61Dr9ZeQPatyLA24PUnEI2HMikd2xwva/ZnBmGwScl02WXDjEXA/RrG8LOwzmsVkIkzYgSIpEm7JTubegU5s/OkmLVSU1suuxYXdoE8MWNw7jszWXsSsnh4jeW8Mn1J9OudQ03oA2OgZF3mnVGB9fA31+YW4B4+ZuJk1dgmecB4B1Y8m8As7Zk8fzCA3j4BPL5P04nODgE0vfAl1MhaR18eD6M+SeMucccoaojT5uVYZ1b8/vGQyzcdrjFJ0TLd6Wy83AO/l620rq3/m1D+GbV/tIFASLNgRIikSbMarVwzYgOPFiyD9cZTXC67FjtW/vz5U3DuOzNpew+kmsmRdOG1m5DVIsFovubjxpIyynk/g/nk2HE8sSEXgSHmnU+tO4M1/0Ov9wLCe/BgqchcSmc/5ZZ7F1Ho7uF8/vGQyzYerjOW4GcKJzF1Gf3iyHA2/yT0q9tKwDWJqZrWlGaDRVVizRxFwyMJS4qiFFdw+gV0zy2k4kO8eWLG4fRtU0ASZn5TH13OSnZDdd36IU5W8nIK6JHZCCXDD5mU2ZPX5j8Ipz3P7OAe+d8eGMU7KnZBtEVGVOyjceqPWlkVbLnXEuQllPI7JJi6stKpssAekQF4u1hJTO/mF1Hcio7XaRJUUJUAS27l6bEz8uD2beP4sPrhjbp6bJjtQny4bMbTqZ9az8SU/O44YOVx3e0doGth7L4aJk5SvHQWXF4VLbMvu8UmPYHhHWHrIPw3pmw+MU6rUJr19qPDq39KHYYLNnh+u7bSRn5fL5i7/EtDJqYb1bvp7DYQa+YoHJTh542K71jzJ/X7E13U3QitaOEqAJadi/iGq0DvHnn6sEE+Xiwam86M75ci8PhumXwhmHw+E8bsTsMJpwUwfAuYVWf0KanmRT1vggMO/z+EHx2GeTVvtZltLNrtYuX3xfZHVz1zjL++fU6TvnvfD5ccvyedk2B2Zm6fDF1Wf3ahgDqRyTNhxIiEWlQncMDeP3KgXhYLfz090Gen7PVZdeeuymZP7el4GWz8sAZcTU7yTsAzn8Tznre3Gtty2x4YzQcWF2re48umTZbsPUwhgt7HX2wZA9bD2UDZn+fB7/fwMQX/2TelmSX3cMVVu5JY3tyNr6eNs7ue3xLg37tQgBYnajCamkelBCJSIMb3jmMp87vDcDLf2zn64R99b5mQbGdJ2ZtBODakR1rvpINzKLtQdeaBdch7SF9L7x9urkBbQ2Tm2GdW+Nps5CYmsfuI7l1+RWOk5yVzwu/mwnj4+f24rFzTqKVnyfbk7O55t0VXPXOcrYkNY1NUz8tmaY8u280gT6ex73vHCHafDCrQaZKRVxNCZGINIqLB7XllrGdAbj3m79ZurN+tTfv/7Wb3UdyCQ/05tZT67jSK7qfuaVIj7PAXmhuQPv1dVBQfdLh7+3BwPbmaqqFW10zbfb0z5vJKiimb2wwlw9px1XDOjD/7lOYNqojnjYLC7ceZtKLC7n/23UNWqRenfTcQn4q6Zx+6dDjp8sAYkJ8CQ/0pthhsH5/3bqOizQmJUQi0mhmnN6dM3tHUWQ3uPHDBHYezq7TdQ5nFfDy3O2AuZu9c7l3nfiGwJSP4PQnwephNoL83ylwaGO1p5bWEbkgIVq5O5VvVu0H4NFzepUuVQ/29eSBM+OYc9cYJp4UicOAT5btZex/5vPa/B1uGX35tqSYumdUEH0r6cNksVhURyTNihIiEWk0VquFZy/uS7+2IWTkFXHteytIq8N+V8/+toWsgmJ6xwRz4YDY+gdmscDwW+HqWebGs0e2wZunwsp3IT+z0tOcdURLdh6hsLjuhc92h8FDJb2mpgxqW5pIlNW+tT+vXzmQz284md4xwWQXFPPvXzYz/rkF/PT3AZfWMVWlbDH1ZUPaVrny0fl7rFZCJM2AEiIRaVQ+njbevGoQsa182X0klxs/TKCguOajHOv3Z/D5ykQAHp4c59qmf+1Ohpv+NLf4KM6Dn+6Af7eH10bCrP8zO2en7SmtM4qLCiIswIvcQjsr96TW+bafLN/LxoOZBPl4cM/E7lUeO7RTa76fPoJnL+pLRJA3+9LyuPWT1Vz4+pJGGYlZtTeNrYey8fG0ck7/mCqP7e8cIdLSe2kGlBCJSKMLDzSX4wd6e7B8dyr3fb2uRiMchmHw2I8bMQyY3DeaQR1CXR+cfxhc/hWMe9gsuDYccGgdrHgLvpkGL/aB53rCF1OxLn+dy2KP4EExC7em1Ol2qTmF/PfXLQDMmNCd1gHe1Z5jtVq4YGAs82aM5Y7xXfH1tJGwJ41z4xdzx2er2Z+eV6dYauKTZWYyOrlPNEEVFFOX1Ts2GIsF9qfnkZyV32AxibiCEqIKqDGjSMPrFhHIq1cMwGa18M3q/bz8x/Zqz5m9Lonlu1Px8bRy76QeDRec1Qaj7oI7/oa7NsNF78PJt0D0ALPOKOsgbPwOfrmXu3bfyN/e05iUcD3MfRy2/Q556TW+1X9+3UJGXhE9o4LKdXuuCT8vD+4Y3415M8ZyQcnU4XdrDnDqf+fz1p87a3WtmsjILeKnvw8AlRdTlxXo40m3NuZmxBolkqbOYjTWxHMzlJmZSXBwMBkZGQQFNY8tE0Sam0+W7eX+b9cB8OIl/TinX8XTMPlFdsY9u4D96XncPq4rd57WrTHDPKowF/YnmHuiJS7HsXcZ1oJjV1FZzCaQPc+GITeAf+sKL/X3vnTOiV+MYcCXNw1jcD1HvNbty+DxWRtZvsucvnvmgj5cfOxWJvXw/l+7efiHDfSIDOTn20fVqHP6P7/6m89XJnLL2M7cM7EBk1iRMury91sjRCLiVpcNbce0UR0BuPvLv1m5u+JanDcX7mR/eh5RwT7cNKZzY4ZYnpcfdBwFo++Gy7/E+s/d3BwUz31F17En9mxo1REwIHmjuZnsC73g53shPbHcZRwlhdSGAef1j6l3MgTmFNXnN5zMP0raENz/7TqXbS1ybGfqmm4j42zQqJVm0tQpIRIRt7t3Uk9Oj4ug0O7ghg8T2HPMhqBJGfm8On9HybE98PWyuSPMilmtdIgbxKf2cTwfcBfcvgb+b6vZDTuqLxTlwrLX4KV+8O3NkLwZgK9W7WNNYjr+Xjbuc+H0n8Vi4a7TujG5bzTFDoObP05gV0r9N1hdnZjO5qQsvD2snFtNMXVZzpVmaxPTsbtw2xYRV1NCJCJuZ7NaeOGSfvSOCSY1p5Br31tBRu7RjU3//ctm8orsDGzfqsJtItzNufz+z20p5l5tgRHQ52K4YQFc+S10HA2OYlj7Cbw6lKKPL2HW7B8AuGN8N9oE+bg0HovFwn8u7EO/tiGk5xZx3XsrSM+tfXuDspydqc/qE02wb9XF1GV1iwjEz8tGTqGd7cl16zsl0hiUEIlIk+Dn5cFbUwcRFezDjsM53PxxAoXFDlbtTePb1WbDwocnx9V4qqYxDWzfCn8vG0dyCtl4sEzfIovFXMI/9Ue4/g/oORmw4LntZ9533M/3/k9xTcT2Gm8XUhs+njb+d9VAYkJ82ZmSw80fraKojpvEZuYX8WNJMfVlQ2tXk2SzWuhT0rxxjfY1kyZMCZGINBkRQT68PXUw/l42/tpxhH99t45HfzQ7Rl84MJY+sSHuDbASXh5WhnU2C6cXVNa1OnYgTPmIHRf/wRf2sRQaNvra1+Px6UXwxiizQ7a92KVxtQn04a2pg/D3srFk5xEe/G59nRo4fr96P/lFDrpFBDCgXatan9+vrXmO6oikKVNCJCJNSlx0EK9cNgCrBb5YuY+1JXU290youmGhu9VkGw/DMLjvzwLuKbqBRzt+DCdPB09/SFoHX10LrwyCle9Aket69vSMCuLly/pjtcBnKxJ5e9GuWp1vGAYfL6t9MXVZpR2rtfRemjAlRCLS5JzSow0PTz6p9Ofpp3ZxeZ2NqznriBL2pJFdUPFIzw9rD7B8l9lH6ZZzx8LEp+DO9TD2fvANhbRd8NOd8EJvWPgfOLDaJaNGp/aI4IEz4wB4cvYm5mw8VONz1+7LKC2mPq+6YmrDgJTtkFX++v1LVpptPZRFTiWfjYi71WNHRBGRhjN1eAfyi+zsPpLDtSM6ujucanUI86ddqB97U3NZsuMIp8VFlHs/u6CYJ2dtAuDWU7oQE+JrvuEXCmP/ae6ltupD+OtlyNwHfzxhPjz9IGYgtB0CbYdC7GDznFq6dkQHdhzO5pNle7nts9V8ddNw4qKr78/iLKY+s3cUIX5exx9gL4K9S2DLz+YjbRf4toKbFkGw2SwyIsiHqGAfDmbk8/e+jNLpRZGmRAlRBeLj44mPj8dub/xdpEXkqBvd2W+oDkZ3C+OjpXtZuPXwcQnRy3O3kZxVQPvWflw/qtPxJ3v5w8k3weDrYN1XsP4r2LcC8jNg95/mw6l1VzM5ciZJYd3AWvWAv8Vi4dGzT2LvkVwWbU/huvdX8P30EVWOvGXlF/HD2go6U+elw/Y5ZgK0/XczxrLy0uD7W80VdiVTbP3bhXBwXRJrEtOVEEmTpE7VVVCnahGpjd82JHHDhwm0b+3HgrtPKX19e3I2E19YSLHD4N2rB3NKjzY1u6DDASlbIXEZJC43/z2y7fjjfIIhdkhJgjTEHFHyDqzwkhl5RZz/6mJ2HM6hb2wwn90wrNK+Th8t3cO/vltPlzYB/H51Oyxbf4Ets2HPX2YbASe/1tBtInSfBMFt4Z2J5ua4Zz4Lg68H4H8Ld/DU7M1MOCmCN64cVLPfX6SO6vL3WyNEIiIuMrxLGB5WC3uO5LLnSA7tW/tjGAaP/LCBYofB+J5tap4MgTnq06aH+Rg41XwtN9UcOXImSfsTzBGa7b+bDwCLFYJiISAc/NuU/Gs+Dw4I5+PxQUz/Lokd+7KY8cUqXr5sEFZr+WJpw2EnYfFv3O2xkEvtG7G8dMxec2HdzQSo+xkQO8jc/81p/CPwyz/htweh0ynQunPpSrPVe9MxDKNB2ic8NXsTh7MK+M+FffCwqURWakcJkYiIiwR4ezCwfSuW7Upl4dbDXDnMn183JLFoewpeHlYePCuu/jfxC4VuE8wHmDU8h9ZDYpkkKWPv0UcFIoGvAXygaJuN3JmtCGgdVZI8tQHDoHjrHJ7PTzH/SuQAFhu0H24mQd0mQusqpjOH3ACbfzKn+b67Ba6ZTe+YYGxWC8lZBRzMyCfaWUPlIpuTMvnfQnND2wsHxjKiS5hLry8nPiVEIiIuNLpbOMt2pbJgawoXDmzL4z+ZhdQ3je5E+9b+rr+hzROi+5uPoTeYr2UlQfpeyE6GnMPmIzsZcpIhJ+Xo8/wMPC12PItSICml3GU9gUzDl+1Bwxhw2mXQdbxZLF0TViuc+yq8OtzcBHfJK/iOuJ0ekYFsOJDJmsR0lydEny0/ulfcnE2HlBBJrSkhEhFxoTHdwvnPr1tYsiOFF+duY396HjEhvtw8tkvjBREYaT6qU1zIq7OWMHvp30TasnhgTBgdfXMozMvhpj+9+bOwGx+dNxI61aEIOqQdTJwJP9xqrpbrchr92oaUJkRn9I6q/TUrkV9kL+1mDjB3UzIPndU0u5pL06VJVhERF4qLCqK1vxc5hXZeX2BuSPvgWT2b1oa0Th5e3DR5NDFxw5hT3JcLlnZkb88b+SroKv4ojKNteDBDOtZ+iX+p/leY02v2Qvj2RvrHmCNka1zcoPHXDUlk5BURGeSDl83K3tRc7ZsmtaaESETEhaxWC6O6Hp2uGdU1jAkn1WC0xk2sVgvPT+lHr5ggc2Pd91fwwZLdAFxWx87UpSwWmPyiOdWW9DenJr8PwN/70+u8r1pFnNNlUwa35eSSJf1zNye77PrSMighEhFxMec2Hh5WCw9PPqnJT934eXnw1lWDiQjyZntyNpuTsvCyWTl/QGz9Lx4YCWc+B0CrhJc52Wc3+UUOtiRl1f/awO6UHJbsPILFAhcPbsv4nuYqvrmbat6NWwSUEImIuNwZvaM4f0AMM8/vTZc2Ae4Op0Yig82NdX09zam9ib0iCfWvoDN1XfQ6H046H4th51mP1/Gm0GUbvX6+0hwdGt01nJgQX04taWuQsCeNtJxCl9xDWgYlRCIiLubjaeO5i/tx0aC27g6lVnrFBPPGlQMZ0y2cO8Z3de3Fz3wWAiKIKd7LDI8vXJIQFdkdfJWwD4BLh5ifdWwrP3pEBuIwYN4WTZtJzSkhEhGRUqO7hfP+tUPoFO7ikS2/UDj7ZQCus/2Mfdeiel/yj83JHM4qICzAi1N7HN0qZXxP8/ncTUqIpOaUEFUgPj6euLg4Bg8e7O5QREROHN0mkN/7cqwWgzuznycjPbVel/t8hTlddsHAWLw8jv45G1dSR7Rg62EKi11XvC0nNiVEFZg+fTobN25kxYoV7g5FROSE4nPm0xy0hNPOepjcn+6r83UOZuQxv2RKbMoxU5N9Y0MIC/Amu6CY5bvql3RJy6GESEREGo9PEF/F3g9A1PbPYNucOl3my5X7cBgwpGPocdN7VquFU3uYK/3mNNJqsxfnbOOqd5aTkVfUKPcT11NCJCIijcq/+ym8UzzR/OGHWyEvrVbnOxxG6XSZs5gaMPd1KzZXlo1z1hFtPoRhGPUPugqHMvN56Y9tLNx6mA/+2t2g95KGo4RIREQaVb92Ify7+BJ2Ew1ZB2H2PbU6f9H2FPan5xHk48GkkyJg9yL4fjo80wmebgffT2d04H68PKwkpuaxrYG7Vn+VsA+7w0y63vtrN3mF9ga9nzQMJUQiItKo4qKCcNi8uaPgJgyLFdZ9ARu/r/H5n69IpLNlP69E/IhPfH9470xY/REUZEJxHqz+CN93TuVnv0c437qQeev3Ntjv4nAYfFHSC8lmtXAkp5AvExKrOUuaIiVEIiLSqHw8bcRFBbHG6MLWrtPMF3+8A7KrWSaffZicha9w45brmOt9N6MPfQgZieAdDAOugqtnw7W/Qu+LwOpJ58LNPOf1Opcumgi/PQipu1z+uyzddYQ9R3IJ9Pbg7gndAfjfwp0Uu3BrEmkcSohERKTR9W/XCoAv/C+DiN6Qlwo/3g7H1vsU5cH6r+Hji+HZ7vj/8QB9rDspxmZuHHvRezBjq9njqMMIaHcyXPAW3LWJjOH3s88II8jIhL9egpf6w8cXwdZfweGaaS1nLdPZ/aKZOqwDof5e7EvLY9a6gy65vjQeJUQiItLo+rUNAWDV/hw473WwesKW2bD2U3A4YNefZl3Qf7vBV9fCtl/BsLPZ2pWHi6by/al/wGWfw0nngafP8TcICCf49H9yY6u3ub7w/0gKHwEYsO03+ORieKkfLHoeclLq/Duk5xby8/okAC4Z3A5fLxvXDO8AwOsLdjZ4Mbe4lhIiERFpdM6EaMOBTArCesIp5lJ8Zt8DL/aB9886WhcU3A5GzWDduXOYmPsoX1jP4PQhJ9XoPqfGRTHHMZDHQh6Hf6yCYbeCTwik74U5j8BzPeGbGyFxxfGjU9X4bvV+CosdxEUF0SsmCIArh7XHz8vGpoOZLNh6uFbXE/dSQiQiIo2ufWs/Wvl5UljsYNPBLBh+G8QOhsKs4+uCbl8L4x7kva3mZrOT+0YR6ONZo/s4l98v3JpCYXBHmPAk/N9mOCceovqBvRD+/gzeHg9vjDYTssUvwfpvYN9KyEoyR6yOYRgGn5VMl10ypC0WiwWAED8vLhvSDoDX5u+o78ckjcjD3QGIiEjLY7FY6Nc2hHlbDrNmb5o5YnTxB7AkHmIHQbdJ5abCMvKKmLXuAABTBrer8X36xAQTHujN4awClu06wqiu4eDpC/2vMB/7E2DF27DuK0j623wcy+oJwTEQ3LbkEUuiI5Sw5Ax6eIRzTtzIcodfN6oj7y/ZzbJdqazam8aAknopadqUEImIiFv0a9vKTIicO98HRZsjOBX4Ye0B8oscdIsIYEC7kBrfw2q1cGr3Nny+MpG5m5LNhKismIHm4/QnYNMP5kq0jH0lj0SzT5KjCNJ2m48S7YCPvEp+eP4u8GsNkb1h3MNExQzg3H4xfJmwj9fn7+B/Vw2qcbziPkqIRETELfqVJDalCVEVPltu9hKaMrhd6fRUTY3raSZEczYd4uHJcRWf7xcKA68+/nV7kZkUOZOk9L0UpSWyZNUaIowUunilYSvOgdwjsHM+7FwAQ6Zx88l38GXCPn7beIjtyVl0aRNYq5il8amGqALa7V5EpOH1iw0BYPeRXFJzCis9bv3+DDYcyMTLZuX8/jG1vs/IrmF4eVjZl5bH1kO17Fpt84SQdtB+OPS5GEbP4NvoGVxVcA83Br6C9f598M/dcMMC6H0xYMDy/9Hp81O5r90mwOCNBTtrHbM0PiVEFdBu9yIiDS/Yz5NOYf4ArK1ilOizFebo0IRekbTy96r0uMr4eXkwonNrwDWbvTrjmTK4HRarFXxbQXQ/uOBNuOp7CO0M2UncmPw473v+m1VrVnEwI6/e95WGpYRIRETcxjlttrqShCi3sJjvV5vF1JcMblvhMTVRutlrPROirYeyWLU3HQ+rhQsGVjBa1Wks3PwXjL0PbF6Msf3NLI+72fL5Q1BcUK97S8NSQiQiIm7Tv6QfUWV1RLPXJZFVUEy7UD+GdWpd5/uM69kGMBOvlOy6JybOztTjerahTWAFDSHBXB039l64ZSmpEcPxsRQx9sD/sL86wmw46UqGAcmbYNscyKr/6Fdt2B0GC7ce5n8Ld5CZX9So924IKqoWERG36dfWXJK+NjEdh8PAai1f8Hy0mLrtce/VRlSwLydFB7HhQCbzNidz0aDajzYVFNv5ZtU+wOxMXa3WnWl14yye/u+TXJfzJuGp28yGk30vhdMeh4Dw6q9RkYz9ZgH3rgXmv9llEqHgtuaqudhBEDMIovqCl1/d7lOJnYez+SphH9+s2k9SZj5g8M2q/bx3zRAigytJEpsBJUQiIuI2PaIC8fawkpFXxK4jOXQODyh9b3tyFiv3pGGzWrhwYGy97zWuRxs2HMhk7qa6JUS/bzxEWm4RkUE+jO5Ws2TGYrXS8/RrGfdZd/7l+xUXGb9hWfspbPkZTnsU+l8F1moma/LSYPeio6vYjmwr/76HDwTHwpEdZquAjETY+F1JADaIiDOTI2eSFNat+nuWVVxI9uFdrFi1mi2b12Ok7SbOcpgJlmTa+RzGlwJmHRnKP185mweuv5RuEc1zRZ0SIhERcRtPm5VeMcEk7Eljzd70cgnRZ8vN6alTurchIqj+Iw/jekbw0h/b+XPbYQqK7Xh72Gp1vjOeiwfFYqvFaNWZvaP4z69h3JM2Ff8xV3Lmnn9D0jpzM9vVH8NZz0Nkr6MnFOVD4rKSBGg+HFwDRplu2RYrRA+ATmPMmqXYIeY0XUEWHFhtdtjen2D+m51k3itpHSS8a57vHQTR/Y8mSDEDzdfTdkP6HkjbA2m7MdJ2U5CyE6+cJAJwcApwClSYOVxg+5MLiv4k4bV32DLmH3QfcwlYa/f5upsSIhERcav+bUPMhCgxnQtKRoIKiu18s3o/AJcOqXsxdVm9y3StXrozlTE1HOUBSEzNZdH2FCwWaj265GGzcsPoTjz0/QZm/u3PhLv+wGPlWzDvSdi33Nwy5OSbwT/MTID2LoXi/PIXCetmJj8dx0CHkeAbcvyNvAOh42jzAWZ9Ueb+kgRpJexLMJOrgkxzum3XgirjtgDONDTf8OSQLRJatSe8bTf82nSGVh2gVXsozKVwyetYN33PQDbBglvIXfEEfiNvgf5XVhxrE6SESERE3KqiBo1zNiaTmlNIRJB3rRKXqlitFsb1aMNnKxL5Y9OhWl33i5Xm6NDILmG0Da19Tc5FA9vywpxt7EvLY9aGw5wz7BaIOwd+udfskL3klfInBESaCVCnMWYSFFz7/ktYLOZUWnAsnHSu+Zq9GJI3Hk2Q9q+Ew1swLBZyfSLYXRzGhrxQEo1w9hptOOIVRa+43kw8uR9924ZU2hTTq91Q8o8k8tuHT3Fy2g+E5h6A3/4F82ZCv8tg6E0Q1qX2v0MjUkIkIiJu1a9kpdmmg5nkF9nx8bSV9vq5aGBbPGyuWxA9rmcEn61IZM6mZB4526hR1+tiu4MvV5rF1FPquPTf18vGNcM78OzvW3lt/g7O7huNJTgGpnwIW381N5T1CSpJgsaaI0K17MhdIzYPiOpjPgZdS2pOIc/PXs0P6w6TkWbez2KBUV3DuXBgLKfHReDjWbOpL5/WbZlw26s89f31ZK/8lGttP9O9aB+seNN8dD3dHAnrdErD/G71pIRIRETcKibEl7AAb1KyC1i/P4OIIB/+3JYC1D0BqczILmF4e1jZn57HlkNZ9IgMqvachdsOk5SZTys/T06Li6jzva8c1p7XFuxgc1IW87ce5pTuZisAuk0wH43sr+0p3PnFGg5lFgAWOoX5c8HAWM4fEENUsG+drmmzWvjXuQN4IzSECT+PZbh1A/e1mkfvnCWw7TfzEd7DHDHqM8XlK+DqQ32IRETErSwWC/3LTJvVd3qqKr5eNkZ0CQNg7qbkGp3jLKY+f0BsrQuxywrx8+KyIeZy/dfn76jzdeqrsNjB0z9v5vK3l3Eos4BO4f58dsPJzP2/MUw/pUudkyEni8XCTWM68+Il/Vlh6c3kI//gtvC3KRgwDbwC4PBm+OkOeD4O5jxithFoApQQiYiI2zmnzRL2pJVOT13iomLqYzmbNNZkG4/krHzmbjYTp/p0yna6blRHPG0Wlu1KZdXetHpfr7Z2peRw4et/8fqCHRgGXDqkHT/9YyQnd2pd601zq3NOvxjev2YIgd4e/JDoy5nbJ3PgulUw4Slzf7i8NFj0PLzYx9w4182UEImIiNs5O1b/uiHJJdNTVRnXw7zumhp0rf46YT92h8HA9q3o6oL+OlHBvpzbzyyQbsxRIsMw+CphH2e+9Cd/78sg2NeT1y4fwMzze+Pn1XDVM8O7hPHFTcOIDPJhe3I25729jo3tr4Tb1sCUj6H9SGg3zCz8djMlRCIi4na9Y4OxWMBhmD9fUM/pqapEBvvQKyYIw4A/Nlc+bWYYBp+vONop21VuHNMJgN82HmJ7cpbLrluZjLwibvtsDTO+XEtuoZ2hHUP5+fZRTOod1eD3BugZFcQ3twynW0QAhzILuPiNJSzemQY9z4JrZsFlXzRKHNVRQiQiIm4X6ONJ1zZHmzK6upj6WM5Roqo2e122K5XdR3IJ8PbgTBcmD13aBHJ6yejXGwt2uuy6FVmxO5UzXvyTH9cewGa1cPeE7nwy7WSiQ+pXJ1Rb0SG+fHnTcIZ2DCW7oJir313OdyV9pppKYbUSIhERaRL6l+xr5qrpqao464j+3JZCfpG9wmOc+6hN7huNv7drp5VuGtsZgO/W7OdgRp5Lrw1mq4Dnf9/KlDeWsD89j3ahfnx10zCmn9KlVl22XSnY15MPrhvCWX2iKLIb3PH5Gl6dvx3DMNwSz7GUEImISJNw9YgODOkQyv1n9Gjwe/WKDqZNoDe5hXaW7jxy3PsZuUXMXp8EuKaY+lgD2rViSMdQiuwGb/+5y6XXTkzNZcr/lvLi3G04DDi/fwyzbhtJ/3atXHqfuvD2sPHSJf2ZNqojAM/8soWHvt+A3eH+pEgJUQXi4+OJi4tj8ODB7g5FRKTF6BkVxBc3DWNg+9AGv5fVaikdJapo+f13a/ZTWOygR2QgfWKDGySGm0tGiT5dvpf03EKXXPOHtQc448U/SdiTRqC3By9e0o/npvQj0MfTJdd3BavVwgNnxvHgWXFYLPDt6v0kpua6OywlRBWZPn06GzduZMWKFe4ORUREGkjZOqKy0zaGYfBpyXTZJYPbunw5utPYbuH0iAwkp9DOh0v21Ota2QXFzPhyLbd9upqsgmL6twth9u2jOKdfHbb8aCTXjezIK5cO4I0rB9IhzN/d4ahTtYiItEwjSrpWH8jIZ9PBLOKiza7V6/ZnsDkpCy8PK+f2b7iEwmKxcPPYztz+2Rre+2s314/qhK/X8SvrDMOgoNhBZl4RmfnFZOUXkZVfTFZ+MZn5RWTlF/HJsr3sPpKL1QK3ntKF28Z1demWJw3lzD6Ns9KtJpQQiYhIi+TrZWNklzDmbk5m7qZDpQnRZyvMztRn9IokxM+rQWM4s3cU//l1C/vS8pj2wUr8vW1lEp3ikkcRRfbqa2yig314fko/hnZq3aAxn6iUEImISIs1rmeEmRBtTuYf47qSW1jMD2sOADBlcLsGv7+HzcoNozvx0PcbWLQ9pcpjrRYI8PYg0MeTIF9PAn08CPIxf45t5cv1IzsR7Nd0aoWaGyVEIiLSYo3r2Qa+hbX70jmcVcD8LclkFxTTobUfJ3dq+OJugMuGtMMwIKew2Ex2fDwI8jETHjP5Mf/197I1WD2TKCESEZEWLCLIh94xwazbn8G8zcmlG8te3IDF1MfysFmZOrxDo9xLKtf0K65EREQakHP5/TuLd7FyTxo2q4ULB7h/by1pXEqIRESkRRvf01x+vznJ3Ffs1B5taBPk486QxA2UEImISIt2UnQQEUHepT83RGdqafqUEImISItmsVg4taRJY0SQN2O6hbs5InEHJUQiItLiTR3eng6t/Zhxevdm0dBQXE+rzEREpMXrERnE/LtPcXcY4kZKg0VERKTFU0IkIiIiLZ4SIhEREWnxlBCJiIhIi6eESERERFo8JUQiIiLS4ikhEhERkRZPCZGIiIi0eEqIREREpMVTQiQiIiItnhIiERERafGUEImIiEiLp4RIREREWjwlRCIiItLiebg7gKYoPj6e+Ph4iouLAcjMzHRzRCIiIlJTzr/bhmHU+ByLUZujW5h9+/bRtm1bd4chIiIidZCYmEhsbGyNjlVCVAWHw8GBAwcIDAzEYrG49NqZmZm0bduWxMREgoKCXHrtE5k+t9rTZ1Y3+tzqRp9b3ehzq72qPjPDMMjKyiI6OhqrtWbVQZoyq4LVaq1xZllXQUFB+vLXgT632tNnVjf63OpGn1vd6HOrvco+s+Dg4FpdR0XVIiIi0uIpIRIREZEWTwmRm3h7e/Pwww/j7e3t7lCaFX1utafPrG70udWNPre60edWe67+zFRULSIiIi2eRohERESkxVNCJCIiIi2eEiIRERFp8ZQQiYiISIunhMhN4uPj6dChAz4+PgwdOpTly5e7O6Qm65FHHsFisZR79OjRw91hNTkLFy5k8uTJREdHY7FY+O6778q9bxgGDz30EFFRUfj6+jJ+/Hi2bdvmnmCbkOo+t6uvvvq479/EiRPdE2wTMXPmTAYPHkxgYCBt2rTh3HPPZcuWLeWOyc/PZ/r06bRu3ZqAgAAuuOACDh065KaIm4aafG5jx4497vt20003uSnipuG1116jT58+pQ0Yhw0bxs8//1z6vqu+a0qI3ODzzz/nrrvu4uGHH2bVqlX07duXCRMmkJyc7O7QmqyTTjqJgwcPlj4WLVrk7pCanJycHPr27Ut8fHyF7z/zzDO89NJLvP766yxbtgx/f38mTJhAfn5+I0fatFT3uQFMnDix3Pfv008/bcQIm54FCxYwffp0li5dyu+//05RURGnn346OTk5pcfceeed/Pjjj3z55ZcsWLCAAwcOcP7557sxaveryecGMG3atHLft2eeecZNETcNsbGxPP300yQkJLBy5UpOPfVUzjnnHDZs2AC48LtmSKMbMmSIMX369NKf7Xa7ER0dbcycOdONUTVdDz/8sNG3b193h9GsAMa3335b+rPD4TAiIyON//znP6WvpaenG97e3sann37qhgibpmM/N8MwjKlTpxrnnHOOW+JpLpKTkw3AWLBggWEY5nfL09PT+PLLL0uP2bRpkwEYS5YscVeYTc6xn5thGMaYMWOM22+/3X1BNROtWrUy3nrrLZd+1zRC1MgKCwtJSEhg/Pjxpa9ZrVbGjx/PkiVL3BhZ07Zt2zaio6Pp1KkTl19+OXv37nV3SM3Krl27SEpKKve9Cw4OZujQofre1cD8+fNp06YN3bt35+abb+bIkSPuDqlJycjIACA0NBSAhIQEioqKyn3fevToQbt27fR9K+PYz83p448/JiwsjF69enHfffeRm5vrjvCaJLvdzmeffUZOTg7Dhg1z6XdNm7s2spSUFOx2OxEREeVej4iIYPPmzW6KqmkbOnQo7733Ht27d+fgwYM8+uijjBo1ivXr1xMYGOju8JqFpKQkgAq/d873pGITJ07k/PPPp2PHjuzYsYP777+fSZMmsWTJEmw2m7vDczuHw8Edd9zBiBEj6NWrF2B+37y8vAgJCSl3rL5vR1X0uQFcdtlltG/fnujoaP7++2/++c9/smXLFr755hs3Rut+69atY9iwYeTn5xMQEMC3335LXFwca9ascdl3TQmRNHmTJk0qfd6nTx+GDh1K+/bt+eKLL7juuuvcGJm0BJdccknp8969e9OnTx86d+7M/PnzGTdunBsjaxqmT5/O+vXrVddXS5V9bjfccEPp8969exMVFcW4cePYsWMHnTt3buwwm4zu3buzZs0aMjIy+Oqrr5g6dSoLFixw6T00ZdbIwsLCsNlsx1XAHzp0iMjISDdF1byEhITQrVs3tm/f7u5Qmg3nd0vfu/rr1KkTYWFh+v4Bt956Kz/99BPz5s0jNja29PXIyEgKCwtJT08vd7y+b6bKPreKDB06FKDFf9+8vLzo0qULAwcOZObMmfTt25cXX3zRpd81JUSNzMvLi4EDBzJ37tzS1xwOB3PnzmXYsGFujKz5yM7OZseOHURFRbk7lGajY8eOREZGlvveZWZmsmzZMn3vamnfvn0cOXKkRX//DMPg1ltv5dtvv+WPP/6gY8eO5d4fOHAgnp6e5b5vW7ZsYe/evS36+1bd51aRNWvWALTo71tFHA4HBQUFLv2uacrMDe666y6mTp3KoEGDGDJkCC+88AI5OTlcc8017g6tSZoxYwaTJ0+mffv2HDhwgIcffhibzcall17q7tCalOzs7HL/L3LXrl2sWbOG0NBQ2rVrxx133METTzxB165d6dixIw8++CDR0dGce+657gu6CajqcwsNDeXRRx/lggsuIDIykh07dnDPPffQpUsXJkyY4Mao3Wv69Ol88sknfP/99wQGBpbWagQHB+Pr60twcDDXXXcdd911F6GhoQQFBfGPf/yDYcOGcfLJJ7s5evep7nPbsWMHn3zyCWeccQatW7fm77//5s4772T06NH06dPHzdG7z3333cekSZNo164dWVlZfPLJJ8yfP59ff/3Vtd811y6Ek5p6+eWXjXbt2hleXl7GkCFDjKVLl7o7pCZrypQpRlRUlOHl5WXExMQYU6ZMMbZv3+7usJqcefPmGcBxj6lTpxqGYS69f/DBB42IiAjD29vbGDdunLFlyxb3Bt0EVPW55ebmGqeffroRHh5ueHp6Gu3btzemTZtmJCUluTtst6ro8wKMd999t/SYvLw845ZbbjFatWpl+Pn5Geedd55x8OBB9wXdBFT3ue3du9cYPXq0ERoaanh7extdunQx7r77biMjI8O9gbvZtddea7Rv397w8vIywsPDjXHjxhm//fZb6fuu+q5ZDMMw6pu9iYiIiDRnqiESERGRFk8JkYiIiLR4SohERESkxVNCJCIiIi2eEiIRERFp8ZQQiYiISIunhEhERERaPCVEIiK1MH/+fCwWy3F7J4lI86aESERERFo8JUQiIiLS4ikhEpFmxeFwMHPmTDp27Iivry99+/blq6++Ao5OZ82aNYs+ffrg4+PDySefzPr168td4+uvv+akk07C29ubDh068Oyzz5Z7v6CggH/+85+0bdsWb29vunTpwttvv13umISEBAYNGoSfnx/Dhw9ny5YtDfuLi0iDUkIkIs3KzJkz+eCDD3j99dfZsGEDd955J1dccQULFiwoPebuu+/m2WefZcWKFYSHhzN58mSKiooAM5G5+OKLueSSS1i3bh2PPPIIDz74IO+9917p+VdddRWffvopL730Eps2beKNN94gICCgXBwPPPAAzz77LCtXrsTDw4Nrr722UX5/EWkY2txVRJqNgoICQkNDmTNnDsOGDSt9/frrryc3N5cbbriBU045hc8++4wpU6YAkJqaSmxsLO+99x4XX3wxl19+OYcPH+a3334rPf+ee+5h1qxZbNiwga1bt9K9e3d+//13xo8ff1wM8+fP55RTTmHOnDmMGzcOgNmzZ3PmmWeSl5eHj49PA38KItIQNEIkIs3G9u3byc3N5bTTTiMgIKD08cEHH7Bjx47S48omS6GhoXTv3p1NmzYBsGnTJkaMGFHuuiNGjGDbtm3Y7XbWrFmDzWZjzJgxVcbSp0+f0udRUVEAJCcn1/t3FBH38HB3ACIiNZWdnQ3ArFmziImJKfeet7d3uaSornx9fWt0nKenZ+lzi8UCmPVNItI8aYRIRJqNuLg4vL292bt3L126dCn3aNu2belxS5cuLX2elpbG1q1b6dmzJwA9e/Zk8eLF5a67ePFiunXrhs1mo3fv3jgcjnI1SSJy4tMIkYg0G4GBgcyYMYM777wTh8PByJEjycjIYPHixQQFBdG+fXsAHnvsMVq3bk1ERAQPPPAAYWFhnHvuuQD83//9H4MHD+bxxx9nypQpLFmyhFdeeYVXX30VgA4dOjB16lSuvfZaXnrpJfr27cuePXtITk7m4osvdtevLiINTAmRiDQrjz/+OOHh4cycOZOdO3cSEhLCgAEDuP/++0unrJ5++mluv/12tm3bRr9+/fjxxx/x8vICYMCAAXzxxRc89NBDPP7440RFRfHYY49x9dVXl97jtdde4/777+eWW27hyJEjtGvXjvvvv98dv66INBKtMhORE4ZzBVhaWhohISHuDkdEmhHVEImIiEiLp4RIREREWjxNmYmIiEiLpxEiERERafGUEImIiEiLp4RIREREWjwlRCIiItLiKSESERGRFk8JkYiIiLR4SohERESkxVNCJCIiIi2eEiIRERFp8f4fXiD+eM+wiSAAAAAASUVORK5CYII=",
"text/plain": [
"