-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
195 lines (141 loc) · 5.85 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import re
import json
import time
from openai import OpenAI
client = OpenAI()
from setup import Setup
class Eval:
def __init__(self, model: str, setup: Setup, log_prefix: str = ""):
self.model = model
self.setup = setup
self.current_sample_ix = None
timestr = time.strftime("%Y%m%d-%H%M%S")
self._log_fname = f"logs/{log_prefix}_{timestr}.log"
self._completion_log_fname = f"logs/completion_{log_prefix}_{timestr}.log"
def run(self, *, sample_size, n_samples):
# self._log({
# "model": self.model,
# "sample_size": sample_size,
# "n_samples": n_samples,
# })
results = []
try:
for sample_ix in range(n_samples):
self.current_sample_ix = sample_ix
train_str, test_input, test_label = self.setup.get_sample(sample_size, bool(sample_ix % 2))
label = self._get_label(train_str, test_input)
rule = self._get_rule(train_str)
correct_rule = self._evaluate_rule(rule)
result ={
"sample_ix": sample_ix,
"test_input": test_input,
"test_label": test_label,
"correct_label": label.strip() == str(test_label),
"correct_rule": correct_rule,
"label": label,
"rule": rule,
"train_str": train_str,
}
self._log(result)
results.append(result)
except KeyboardInterrupt:
pass
return results
def _get_label(self, train_str, test_input) -> str:
task_description = get_label_task_description_template.format(train=train_str, test=test_input)
messages = [{"role": "system", "content": task_description}]
return self._get_completion(messages, 0)
def _get_rule(self, train_str) -> str:
task_description = get_rule_task_description_template.format(train=train_str)
messages = [{"role": "system", "content": task_description}]
return self._get_completion(messages, 0)
def _evaluate_rule(self, rule: str) -> bool:
task_description = self._get_evaluate_rule_task_description(rule)
messages = [{"role": "system", "content": task_description}]
result = self._get_completion(messages, 0)
parsed_result = re.sub('[^a-z]', '', result.strip().lower())
assert parsed_result in ("yes", "no"), f"evaluator returned {result}"
return parsed_result == "yes"
def _get_evaluate_rule_task_description(self, rule: str) -> str:
return evaluate_rule_task_descripion_template.format(func_code=self.setup.func_code, rule=rule)
def _get_completion(self, messages, temperature):
completion = client.chat.completions.create(
model=self.model,
messages=messages,
temperature=temperature,
)
result = completion.choices[0].message.content
self._log_completion(messages, temperature, result)
return result
def _log(self, result) -> None:
print(result)
with open(self._log_fname, "a") as f:
f.write(json.dumps(result) + "\n")
def _log_completion(self, messages, temperature, completion):
data = {
"sample_ix": self.current_sample_ix,
"temperature": temperature,
"model": self.model,
"messages": messages,
"completion": completion,
}
with open(self._completion_log_fname, "a") as f:
f.write(json.dumps(data) + "\n")
class StartsAEndsBEval(Eval):
def _get_evaluate_rule_task_description(self, rule: str) -> str:
return starts_a_ends_b_eval.format(rule=rule)
class StartsAEndsBCoTEval(Eval):
def _get_rule(self, train_str) -> str:
task_description = cot_get_rule_patterns.format(train=train_str)
messages = [{"role": "system", "content": task_description}]
patterns = self._get_completion(messages, 1)
messages += [
{"role": "assistant", "content": patterns},
{"role": "system", "content": cot_get_rule_extract},
]
rule = self._get_completion(messages, 0)
for message in messages:
print(message["content"])
print(rule)
return rule
cot_get_rule_patterns = """
You are a clever assistant who is good at categorizing things.
You observe the following set of input/label pairs:
{train}
Do you see any patterns in the data, explaining which inputs are classified as "True" and which are classified as "False"?
Name a few such patterns. Avoid patters that are incorrect for some of the rows.
"""
cot_get_rule_extract = """
Analyze the patterns you found. How would you describe the rule governing these input/label pairs, in a single sentence?
"""
get_label_task_description_template = """
You are a clever assistant who is good at categorizing things.
You observe the following set of input/label pairs:
{train}
Given another example:
Input: {test}
What is the correct Label?
Respond only with the correct label, say nothing more.
"""
get_rule_task_description_template = """
You are a clever assistant who is good at categorizing things.
You observe the following set of input/label pairs:
{train}
How would you describe the rule governing these input/label pairs, in a single sentence?
"""
evaluate_rule_task_descripion_template = """
Consider the following python function:
```python
{func_code}
```
Is its logic well described by the following rule:
"{rule}"
?
Answer with "Yes" or "No" only, don't say anything more.
"""
starts_a_ends_b_eval = """
Consider the following rule governing sets of input/output pairs:
"{rule}"
Is this exactly equivalent to "Label is True if input starts with 'a' and ends with 'b'"?
Answer with "Yes" or "No" only, don't say anything more.
"""