Skip to content

Latest commit

 

History

History
23 lines (14 loc) · 514 Bytes

README.md

File metadata and controls

23 lines (14 loc) · 514 Bytes

This project analyzes user logging data to identify potential anomalies using machine learning methods and comparing their performance.


Languages, packages, and software used:

  • Python (pandas, scikit-learn, oracledb, numpy, xgboost, datetime, scipy.stats)
  • SQL (Oracle Database)

Repository structure:

  • src/ - source code

    • loading_data.py - data loading from an Oracle database and CSV files
    • main.py - ML model implementation
    • preprocessing.py - data preprocessing
  • README.md