-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathencoder_decoder.py
95 lines (78 loc) · 3.71 KB
/
encoder_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import torch.nn as nn
import torch.nn.functional as F
from encoder import DenseNet
from decoder import Gru_cond_layer, Gru_prob
# create gru init state
class FcLayer(nn.Module):
def __init__(self, nin, nout):
super(FcLayer, self).__init__()
self.fc = nn.Linear(nin, nout)
def forward(self, x):
out = torch.tanh(self.fc(x))
return out
# Embedding
class My_Embedding(nn.Module):
def __init__(self, params):
super(My_Embedding, self).__init__()
self.embedding = nn.Embedding(params['K'], params['m'])
def forward(self, params, y):
if y.sum() < 0.:
emb = torch.zeros(1, params['m']).cuda()
else:
emb = self.embedding(y)
if len(emb.shape) == 3: # only for training stage
emb_shifted = torch.zeros([emb.shape[0], emb.shape[1], params['m']], dtype=torch.float32).cuda()
emb_shifted[1:] = emb[:-1]
emb = emb_shifted
return emb
class Encoder_Decoder(nn.Module):
def __init__(self, params):
super(Encoder_Decoder, self).__init__()
self.encoder = DenseNet(growthRate=params['growthRate'], reduction=params['reduction'],
bottleneck=params['bottleneck'], use_dropout=params['use_dropout'])
self.init_GRU_model = FcLayer(params['D'], params['n'])
self.emb_model = My_Embedding(params)
self.gru_model = Gru_cond_layer(params)
self.gru_prob_model = Gru_prob(params)
def forward(self, params, x, x_mask, y, y_mask, one_step=False):
# recover permute
y = y.permute(1, 0)
y_mask = y_mask.permute(1, 0)
ctx, ctx_mask = self.encoder(x, x_mask)
# init state
ctx_mean = (ctx * ctx_mask[:, None, :, :]).sum(3).sum(2) / ctx_mask.sum(2).sum(1)[:, None]
init_state = self.init_GRU_model(ctx_mean)
# two GRU layers
emb = self.emb_model(params, y)
h2ts, cts, alphas, _alpha_pasts = self.gru_model(params, emb, y_mask, ctx, ctx_mask, one_step, init_state,
alpha_past=None)
scores = self.gru_prob_model(cts, h2ts, emb, use_dropout=params['use_dropout'])
# permute for multi-GPU training
alphas = alphas.permute(1, 0, 2, 3)
scores = scores.permute(1, 0, 2)
return scores, alphas
# decoding: encoder part
def f_init(self, x, x_mask=None):
if x_mask is None:
shape = x.shape
x_mask = torch.ones(shape).cuda()
ctx, _ctx_mask = self.encoder(x, x_mask)
ctx_mean = ctx.mean(dim=3).mean(dim=2)
init_state = self.init_GRU_model(ctx_mean)
return init_state, ctx
# decoding: decoder part
def f_next(self, params, y, y_mask, ctx, ctx_mask, init_state, alpha_past, one_step):
emb_beam = self.emb_model(params, y)
# one step of two gru layers
next_state, cts, _alpha, next_alpha_past = self.gru_model(params, emb_beam, y_mask, ctx, ctx_mask,
one_step, init_state, alpha_past)
# reshape to suit GRU step code
next_state_ = next_state.view(1, next_state.shape[0], next_state.shape[1])
cts = cts.view(1, cts.shape[0], cts.shape[1])
emb_beam = emb_beam.view(1, emb_beam.shape[0], emb_beam.shape[1])
# calculate probabilities
scores = self.gru_prob_model(cts, next_state_, emb_beam, use_dropout=params['use_dropout'])
scores = scores.view(-1, scores.shape[2])
next_probs = F.softmax(scores, dim=1)
return next_probs, next_state, next_alpha_past