forked from jhayes14/adversarial-patch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_patch.py
executable file
·286 lines (217 loc) · 10 KB
/
make_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
from pretrained_models_pytorch import pretrainedmodels
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--epochs', type=int, default=20, help='number of epochs to train for')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--target', type=int, default=859, help='The target class: 859 == toaster')
parser.add_argument('--conf_target', type=float, default=0.9, help='Stop attack on image when target classifier reaches this value for target class')
parser.add_argument('--max_count', type=int, default=1000, help='max number of iterations to find adversarial example')
parser.add_argument('--patch_type', type=str, default='circle', help='patch type: circle or square')
parser.add_argument('--patch_size', type=float, default=0.05, help='patch size. E.g. 0.05 ~= 5% of image ')
parser.add_argument('--train_size', type=float, default=2000, help='Number of training images')
parser.add_argument('--test_size', type=float, default=2000, help='Number of test images')
parser.add_argument('--image_size', type=int, default=299, help='the height / width of the input image to network')
parser.add_argument('--plot_all', type=int, default=1, help='1 == plot all successful adversarial images')
parser.add_argument('--netClassifier', default='inceptionv3', help="The target classifier")
parser.add_argument('--outf', default='./logs', help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, default=1338, help='manual seed')
opt = parser.parse_args()
print(opt)
try:
os.makedirs(opt.outf)
except OSError:
pass
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
target = opt.target
conf_target = opt.conf_target
max_count = opt.max_count
patch_type = opt.patch_type
patch_size = opt.patch_size
image_size = opt.image_size
train_size = opt.train_size
test_size = opt.test_size
plot_all = opt.plot_all
assert train_size + test_size <= 50000, "Traing set size + Test set size > Total dataset size"
print("=> creating model ")
netClassifier = pretrainedmodels.__dict__[opt.netClassifier](num_classes=1000, pretrained='imagenet')
if opt.cuda:
netClassifier.cuda()
print('==> Preparing data..')
normalize = transforms.Normalize(mean=netClassifier.mean,
std=netClassifier.std)
idx = np.arange(50000)
np.random.shuffle(idx)
training_idx = idx[:train_size]
test_idx = idx[train_size:test_size]
train_loader = torch.utils.data.DataLoader(
dset.ImageFolder('./imagenetdata/val', transforms.Compose([
transforms.Scale(round(max(netClassifier.input_size)*1.050)),
transforms.CenterCrop(max(netClassifier.input_size)),
transforms.ToTensor(),
ToSpaceBGR(netClassifier.input_space=='BGR'),
ToRange255(max(netClassifier.input_range)==255),
normalize,
])),
batch_size=1, shuffle=False, sampler=SubsetRandomSampler(training_idx),
num_workers=opt.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
dset.ImageFolder('./imagenetdata/val', transforms.Compose([
transforms.Scale(round(max(netClassifier.input_size)*1.050)),
transforms.CenterCrop(max(netClassifier.input_size)),
transforms.ToTensor(),
ToSpaceBGR(netClassifier.input_space=='BGR'),
ToRange255(max(netClassifier.input_range)==255),
normalize,
])),
batch_size=1, shuffle=False, sampler=SubsetRandomSampler(test_idx),
num_workers=opt.workers, pin_memory=True)
min_in, max_in = netClassifier.input_range[0], netClassifier.input_range[1]
min_in, max_in = np.array([min_in, min_in, min_in]), np.array([max_in, max_in, max_in])
mean, std = np.array(netClassifier.mean), np.array(netClassifier.std)
min_out, max_out = np.min((min_in-mean)/std), np.max((max_in-mean)/std)
def train(epoch, patch, patch_shape):
netClassifier.eval()
success = 0
total = 0
recover_time = 0
for batch_idx, (data, labels) in enumerate(train_loader):
if opt.cuda:
data = data.cuda()
labels = labels.cuda()
data, labels = Variable(data), Variable(labels)
prediction = netClassifier(data)
# only computer adversarial examples on examples that are originally classified correctly
if prediction.data.max(1)[1][0] != labels.data[0]:
continue
total += 1
# transform path
data_shape = data.data.cpu().numpy().shape
if patch_type == 'circle':
patch, mask, patch_shape = circle_transform(patch, data_shape, patch_shape, image_size)
elif patch_type == 'square':
patch, mask = square_transform(patch, data_shape, patch_shape, image_size)
patch, mask = torch.FloatTensor(patch), torch.FloatTensor(mask)
if opt.cuda:
patch, mask = patch.cuda(), mask.cuda()
patch, mask = Variable(patch), Variable(mask)
adv_x, mask, patch = attack(data, patch, mask)
adv_label = netClassifier(adv_x).data.max(1)[1][0]
ori_label = labels.data[0]
if adv_label == target:
success += 1
if plot_all == 1:
# plot source image
vutils.save_image(data.data, "./%s/%d_%d_original.png" %(opt.outf, batch_idx, ori_label), normalize=True)
# plot adversarial image
vutils.save_image(adv_x.data, "./%s/%d_%d_adversarial.png" %(opt.outf, batch_idx, adv_label), normalize=True)
masked_patch = torch.mul(mask, patch)
patch = masked_patch.data.cpu().numpy()
new_patch = np.zeros(patch_shape)
for i in range(new_patch.shape[0]):
for j in range(new_patch.shape[1]):
new_patch[i][j] = submatrix(patch[i][j])
patch = new_patch
# log to file
progress_bar(batch_idx, len(train_loader), "Train Patch Success: {:.3f}".format(success/total))
return patch
def test(epoch, patch, patch_shape):
netClassifier.eval()
success = 0
total = 0
for batch_idx, (data, labels) in enumerate(test_loader):
if opt.cuda:
data = data.cuda()
labels = labels.cuda()
data, labels = Variable(data), Variable(labels)
prediction = netClassifier(data)
# only computer adversarial examples on examples that are originally classified correctly
if prediction.data.max(1)[1][0] != labels.data[0]:
continue
total += 1
# transform path
data_shape = data.data.cpu().numpy().shape
if patch_type == 'circle':
patch, mask, patch_shape = circle_transform(patch, data_shape, patch_shape, image_size)
elif patch_type == 'square':
patch, mask = square_transform(patch, data_shape, patch_shape, image_size)
patch, mask = torch.FloatTensor(patch), torch.FloatTensor(mask)
if opt.cuda:
patch, mask = patch.cuda(), mask.cuda()
patch, mask = Variable(patch), Variable(mask)
adv_x = torch.mul((1-mask),data) + torch.mul(mask,patch)
adv_x = torch.clamp(adv_x, min_out, max_out)
adv_label = netClassifier(adv_x).data.max(1)[1][0]
ori_label = labels.data[0]
if adv_label == target:
success += 1
masked_patch = torch.mul(mask, patch)
patch = masked_patch.data.cpu().numpy()
new_patch = np.zeros(patch_shape)
for i in range(new_patch.shape[0]):
for j in range(new_patch.shape[1]):
new_patch[i][j] = submatrix(patch[i][j])
patch = new_patch
# log to file
progress_bar(batch_idx, len(test_loader), "Test Success: {:.3f}".format(success/total))
def attack(x, patch, mask):
netClassifier.eval()
x_out = F.softmax(netClassifier(x))
target_prob = x_out.data[0][target]
adv_x = torch.mul((1-mask),x) + torch.mul(mask,patch)
count = 0
while conf_target > target_prob:
count += 1
adv_x = Variable(adv_x.data, requires_grad=True)
adv_out = F.log_softmax(netClassifier(adv_x))
adv_out_probs, adv_out_labels = adv_out.max(1)
Loss = -adv_out[0][target]
Loss.backward()
adv_grad = adv_x.grad.clone()
adv_x.grad.data.zero_()
patch -= adv_grad
adv_x = torch.mul((1-mask),x) + torch.mul(mask,patch)
adv_x = torch.clamp(adv_x, min_out, max_out)
out = F.softmax(netClassifier(adv_x))
target_prob = out.data[0][target]
#y_argmax_prob = out.data.max(1)[0][0]
#print(count, conf_target, target_prob, y_argmax_prob)
if count >= opt.max_count:
break
return adv_x, mask, patch
if __name__ == '__main__':
if patch_type == 'circle':
patch, patch_shape = init_patch_circle(image_size, patch_size)
elif patch_type == 'square':
patch, patch_shape = init_patch_circle(image_size, patch_size)
else:
sys.exit("Please choose a square or circle patch")
for epoch in range(1, opt.epochs + 1):
patch = train(epoch, patch, patch_shape)
test(epoch, patch, patch_shape)