-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
428 lines (329 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import json
import yaml
import argparse
import numpy as np
from math import log
import dgl
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.nn.utils.rnn as rnn_utils
from tqdm import tqdm
from torch import nn
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from bisect import bisect
from util.vocabulary import Vocabulary
from util.checkpointing import CheckpointManager, load_checkpoint
from model_fvqa.model import CMGCNnet
from model_fvqa.train_dataset import FvqaTrainDataset
from model_fvqa.test_dataset import FvqaTestDataset
# os.environ["CUDA_VISIBLE_DEVICES"] = "3"
def train():
parser = argparse.ArgumentParser()
# 配置文件
parser.add_argument(
"--config-yml",
default="exp_fvqa/exp2.yml",
help=
"Path to a config file listing reader, model and solver parameters.")
parser.add_argument("--cpu-workers",
type=int,
default=8,
help="Number of CPU workers for dataloader.")
parser.add_argument(
"--save-dirpath",
default="fvqa/exp_data/checkpoints",
help=
"Path of directory to create checkpoint directory and save checkpoints."
)
parser.add_argument(
"--load-pthpath",
default="",
help="To continue training, path to .pth file of saved checkpoint.")
parser.add_argument("--gpus", default="", help="gpus")
parser.add_argument(
"--overfit",
action="store_true",
help="Whether to validate on val split after every epoch.")
parser.add_argument(
"--validate",
action="store_true",
help="Whether to validate on val split after every epoch.")
args = parser.parse_args()
# set mannual seed
torch.manual_seed(10)
torch.cuda.manual_seed(10)
cudnn.benchmark = True
cudnn.deterministic = True
config = yaml.load(open(args.config_yml))
device = torch.device("cuda:0") if args.gpus != "cpu" else torch.device(
"cpu")
# Print config and args.
print(yaml.dump(config, default_flow_style=False))
for arg in vars(args):
print("{:<20}: {}".format(arg, getattr(args, arg)))
print('Loading TrainDataset...')
train_dataset = FvqaTrainDataset(config, overfit=args.overfit)
train_dataloader = DataLoader(train_dataset,
batch_size=config['solver']['batch_size'],
num_workers=args.cpu_workers,
shuffle=True,
collate_fn=collate_fn)
if args.validate:
print('Loading TestDataset...')
val_dataset = FvqaTestDataset(config, overfit=args.overfit)
val_dataloader = DataLoader(val_dataset,
batch_size=config['solver']['batch_size'],
num_workers=args.cpu_workers,
shuffle=True,
collate_fn=collate_fn)
print('Loading glove...')
que_vocab = Vocabulary(config['dataset']['word2id_path'])
glove = np.load(config['dataset']['glove_vec_path'])
glove = torch.Tensor(glove)
print('Building Model...')
model = CMGCNnet(config,
que_vocabulary=que_vocab,
glove=glove,
device=device)
if torch.cuda.device_count() > 1 and args.gpus != "cpu":
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model = model.to(device)
print(model)
iterations = len(train_dataset) // config["solver"]["batch_size"] + 1
def lr_lambda_fun(current_iteration: int) -> float:
current_epoch = float(current_iteration) / iterations
if current_epoch <= config["solver"]["warmup_epochs"]:
alpha = current_epoch / float(config["solver"]["warmup_epochs"])
return config["solver"]["warmup_factor"] * (1. - alpha) + alpha
else:
idx = bisect(config["solver"]["lr_milestones"], current_epoch)
return pow(config["solver"]["lr_gamma"], idx)
optimizer = optim.Adamax(model.parameters(),
lr=config["solver"]["initial_lr"])
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda_fun)
T = iterations * (config["solver"]["num_epochs"] -
config["solver"]["warmup_epochs"] + 1)
scheduler2 = lr_scheduler.CosineAnnealingLR(
optimizer, int(T), eta_min=config["solver"]["eta_min"], last_epoch=-1)
summary_writer = SummaryWriter(log_dir=args.save_dirpath)
checkpoint_manager = CheckpointManager(model,
optimizer,
args.save_dirpath,
config=config)
if args.load_pthpath == "":
start_epoch = 0
else:
start_epoch = int(args.load_pthpath.split("_")[-1][:-4])
model_state_dict, optimizer_state_dict = load_checkpoint(
args.load_pthpath)
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
optimizer.load_state_dict(optimizer_state_dict)
print("Loading resume model from {}...".format(args.load_pthpath))
global_iteration_step = start_epoch * iterations
for epoch in range(start_epoch, config['solver']['num_epochs']):
print(f"\nTraining for epoch {epoch}:")
train_answers = []
train_preds = []
for i, batch in enumerate(tqdm(train_dataloader)):
optimizer.zero_grad()
fact_batch_graph = model(batch)
batch_loss = cal_batch_loss(fact_batch_graph,
batch,
device,
neg_weight=0.1,
pos_weight=0.9)
batch_loss.backward()
optimizer.step()
fact_graphs = dgl.unbatch(fact_batch_graph)
for i, fact_graph in enumerate(fact_graphs):
train_pred = fact_graph.ndata['h'].squeeze() # (num_nodes,1)
train_preds.append(train_pred) # [(num_nodes,)]
train_answers.append(batch['facts_answer_id_list'][i])
summary_writer.add_scalar('train/loss', batch_loss,
global_iteration_step)
summary_writer.add_scalar("train/lr",
optimizer.param_groups[0]["lr"],
global_iteration_step)
summary_writer.add_text('train/loss', str(batch_loss.item()),
global_iteration_step)
summary_writer.add_text('train/lr',
str(optimizer.param_groups[0]["lr"]),
global_iteration_step)
if global_iteration_step <= iterations * config["solver"][
"warmup_epochs"]:
scheduler.step(global_iteration_step)
else:
global_iteration_step_in_2 = iterations * config["solver"][
"warmup_epochs"] + 1 - global_iteration_step
scheduler2.step(int(global_iteration_step_in_2))
global_iteration_step = global_iteration_step + 1
torch.cuda.empty_cache()
checkpoint_manager.step()
train_acc_1, train_acc_3 = cal_acc(
train_answers, train_preds)
print(
"trainacc@1={:.2%} & trainacc@3={:.2%} "
.format(train_acc_1, train_acc_3))
summary_writer.add_scalars(
'train/acc', {
'acc@1': train_acc_1,
'acc@3': train_acc_3
}, epoch)
if args.validate:
model.eval()
answers = [] # [batch_answers,...]
preds = [] # [batch_preds,...]
print(f"\nValidation after epoch {epoch}:")
for i, batch in enumerate(tqdm(val_dataloader)):
with torch.no_grad():
fact_batch_graph = model(batch)
batch_loss = cal_batch_loss(fact_batch_graph,
batch,
device,
neg_weight=0.1,
pos_weight=0.9)
summary_writer.add_scalar('test/loss', batch_loss, epoch)
fact_graphs = dgl.unbatch(fact_batch_graph)
for i, fact_graph in enumerate(fact_graphs):
pred = fact_graph.ndata['h'].squeeze() # (num_nodes,1)
preds.append(pred) # [(num_nodes,)]
answers.append(batch['facts_answer_id_list'][i])
acc_1, acc_3 = cal_acc(answers, preds)
print("acc@1={:.2%} & acc@3={:.2%} ".
format(acc_1, acc_3))
summary_writer.add_scalars('test/acc', {
'acc@1': acc_1,
'acc@3': acc_3
}, epoch)
model.train()
torch.cuda.empty_cache()
print('Train finished !!!')
summary_writer.close()
def cal_batch_loss(fact_batch_graph, batch, device, pos_weight, neg_weight):
answers = batch['facts_answer_list']
fact_graphs = dgl.unbatch(fact_batch_graph)
batch_loss = torch.tensor(0).to(device)
for i, fact_graph in enumerate(fact_graphs):
class_weight = torch.FloatTensor([neg_weight, pos_weight])
pred = fact_graph.ndata['h'].view(1, -1) # (n,1)
answer = torch.FloatTensor(answers[i]).view(1, -1).to(device)
pred = pred.squeeze()
answer = answer.squeeze()
weight = class_weight[answer.long()].to(device)
loss_fn = torch.nn.BCELoss(weight=weight)
loss = loss_fn(pred, answer)
batch_loss = batch_loss + loss
return batch_loss / len(answers)
def focal_loss(fact_batch_graph, batch, device, alpha=0.5, gamma=2):
answers = batch['facts_answer_list']
fact_graphs = dgl.unbatch(fact_batch_graph)
batch_loss = torch.tensor(0).float().to(device)
for i, fact_graph in enumerate(fact_graphs):
pred = fact_graph.ndata['h'].squeeze()
target = torch.FloatTensor(answers[i]).to(device).squeeze()
loss = -1 * alpha * ((1 - pred) ** gamma) * target * torch.log(pred) - (1 - alpha) * (target ** gamma) * (
1 - pred) * torch.log(1 - pred)
batch_loss = batch_loss+loss.mean()
return batch_loss/len(answers)
def cal_acc(answers, preds):
all_num = len(preds)
acc_num_1 = 0
acc_num_3 = 0
for i, answer_id in enumerate(answers):
pred = preds[i] # (num_nodes)
# top@1
_, idx_1 = torch.topk(pred, k=1)
if idx_1.item() == answer_id:
acc_num_1 = acc_num_1 + 1
# top@3
_, idx_3 = torch.topk(pred, k=3)
if answer_id in idx_3:
acc_num_3 = acc_num_3 + 1
return acc_num_1 / all_num, acc_num_3 / all_num
def collate_fn(batch):
res = {}
id_list = []
question_list = []
question_length_list = []
features_list = []
img_relations_list = []
num_nodes_list = []
# facts_nodes_list = []
facts_features_list = []
facts_e1ids_list = []
facts_e2ids_list = []
facts_answer_list = []
facts_answer_id_list = []
semantic_n_features_list = []
semantic_e1ids_list = []
semantic_e2ids_list = []
semantic_e_features_list = []
semantic_num_nodes_list = []
for item in batch:
# question
id = item['id'] # scalar
id_list.append(id)
question = item['question'] # (max_len,)
question_list.append(question)
question_length = item['question_length'] # scalar
question_length_list.append(question_length)
features = item['features'] # (36,2048)
features_list.append(features)
img_relations = item['img_relations']
img_relations_list.append(img_relations)
num_nodes = item['facts_num_nodes'] # scalar
num_nodes_list.append(num_nodes)
facts_features = item['facts_features'] # (num,1024)
facts_features_list.append(facts_features)
facts_e1ids = item['facts_e1ids'] # (num_nodes,)
facts_e1ids_list.append(facts_e1ids)
facts_e2ids = item['facts_e2ids'] # (num_nodes,)
facts_e2ids_list.append(facts_e2ids)
# (num_nodes,) one-hot
facts_answer = item['facts_answer']
facts_answer_list.append(facts_answer)
facts_answer_id = item['facts_answer_id'] # scalar
facts_answer_id_list.append(facts_answer_id)
semantic_num_nodes = item['semantic_num_nodes']
semantic_num_nodes_list.append(semantic_num_nodes)
semantic_n_features = item['semantic_n_features']
semantic_n_features_list.append(semantic_n_features)
semantic_e1ids = item['semantic_e1ids']
semantic_e1ids_list.append(semantic_e1ids)
semantic_e2ids = item['semantic_e2ids']
semantic_e2ids_list.append(semantic_e2ids)
semantic_e_features = item['semantic_e_features']
semantic_e_features_list.append(semantic_e_features)
res['id_list'] = id_list
res['question_list'] = question_list
res['question_length_list'] = question_length_list
res['features_list'] = features_list
res['img_relations_list'] = img_relations_list
res['facts_num_nodes_list'] = num_nodes_list
res['facts_features_list'] = facts_features_list
res['facts_e1ids_list'] = facts_e1ids_list
res['facts_e2ids_list'] = facts_e2ids_list
res['facts_answer_list'] = facts_answer_list
res['facts_answer_id_list'] = facts_answer_id_list
res['semantic_n_features_list'] = semantic_n_features_list
res['semantic_e1ids_list'] = semantic_e1ids_list
res['semantic_e2ids_list'] = semantic_e2ids_list
res['semantic_e_features_list'] = semantic_e_features_list
res['semantic_num_nodes_list'] = semantic_num_nodes_list
return res
def pad_sequences(self, sequence):
sequence = sequence[:self.config['dataset']['max_sequence_lengtn']]
padding = np.zeros(self.config['dataset']['max_sequence_lengtn'])
padding[:len(sequence)] = np.array(sequence)
return torch.tensor(padding)
if __name__ == "__main__":
train()