-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
296 lines (231 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
import argparse
import logging
from light import light, light_init
from sklearn.metrics import roc_auc_score, roc_curve
from torch.utils.data.dataloader import default_collate
# customized libs
from utils import read_yaml, Accuracy_Logger, Lookahead, DistributedSamplerWrapper
from trainer import get_model, get_loss, get_optimizer, get_dataset
import torch_geometric
import warnings
torch.manual_seed(20211210)
warnings.filterwarnings("ignore")
# parse arguments
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--work_dir", type=str, default="./work_dir")
parser.add_argument("--config", type=str, default="./config/config01.yaml")
parser.add_argument("--log_file", type=str, default="log.txt")
args = parser.parse_args()
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
def create_logger(log_file):
if args.local_rank < 0:
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
return logger
log_format = "%(asctime)s %(levelname)5s %(message)s"
logging.basicConfig(level=logging.DEBUG, format=log_format, filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(logging.Formatter(log_format))
logging.getLogger(__name__).addHandler(console)
return logging.getLogger(__name__)
class Experiment(object):
def __init__(self, cfg):
self.cfg = cfg
# create ddp model
self.model = get_model(cfg)
self.model.cuda(device)
self.model = DDP(self.model, device_ids=[args.local_rank], find_unused_parameters=True)
# create scheduler
self.optimizer_cls, self.scheduler_cls = get_optimizer(cfg)
self.optimizer = self.optimizer_cls(self.model.parameters(), **cfg.Optimizer.optimizer.params)
# use look ahead optimizer
if self.cfg.Optimizer.look_ahead:
self.optimizer = Lookahead(self.optimizer)
self.scheduler = self.scheduler_cls(self.optimizer, **cfg.Optimizer.lr_scheduler.params)
self.criterion = get_loss(cfg)
# whether or not to resume from the latest checkpoint
resume_path = os.path.exists(os.path.join(args.work_dir, 'latest.pth.tar'))
self.st_fold = 0
self.st_epoch = 0
if resume_path: # otherwise load from the latest checkpoint
args.load_weight = os.path.join(args.work_dir, 'latest.pth.tar')
# Map model to be loaded to specified single gpu.
checkpoint = torch.load(args.load_weight, map_location='cpu')
self.st_fold = checkpoint['kfold']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['opt'])
self.scheduler.load_state_dict(checkpoint['sch'])
self.st_epoch = self.scheduler.last_epoch
print(f"=> loading the latest checkpoint. kfold={self.st_fold}, epoch={self.scheduler.last_epoch}")
def refresh(self):
# refresh model paras after one fold training
self.model = get_model(self.cfg)
self.model.cuda(device)
# self.model = DDP(self.model, device_ids=[args.local_rank], find_unused_parameters=True)
self.optimizer_cls, self.scheduler_cls = get_optimizer(self.cfg)
self.optimizer = self.optimizer_cls(self.model.parameters(), **self.cfg.Optimizer.optimizer.params)
# use look ahead optimizer
if self.cfg.Optimizer.look_ahead:
self.optimizer = Lookahead(self.optimizer)
self.scheduler = self.scheduler_cls(self.optimizer, **self.cfg.Optimizer.lr_scheduler.params)
self.st_epoch = 0
torch.cuda.set_device(args.local_rank)
def run_one_fold(self, kfold, logger):
# create loader
train_dataset = get_dataset(self.cfg, kfold, mode='train')
valid_dataset = get_dataset(self.cfg, kfold, mode='val')
def collate_MIL_graph(batch):
elem = batch[0]
transposed = zip(*batch)
return [samples[0] if isinstance(samples[0], torch_geometric.data.Batch) else default_collate(samples) for
samples in transposed]
train_sampler = DistributedSampler(train_dataset,
num_replicas=torch.cuda.device_count(),
rank=args.local_rank, shuffle=True)
# train_sampler = DistributedSamplerWrapper(ImbalancedDatasetSampler(train_dataset),
# num_replicas=torch.cuda.device_count(),
# rank=args.local_rank,
# shuffle=False)
val_sampler = DistributedSampler(valid_dataset,
num_replicas=torch.cuda.device_count(),
rank=args.local_rank)
bs = self.cfg.Data.dataloader.batch_size
num_workers = self.cfg.Data.dataloader.num_workers
train_loader = DataLoader(train_dataset, batch_size=bs, collate_fn=collate_MIL_graph,
shuffle=False, num_workers=num_workers,
pin_memory=True, drop_last=False, sampler=train_sampler)
valid_loader = DataLoader(valid_dataset, batch_size=bs, collate_fn=collate_MIL_graph,
shuffle=False, num_workers=num_workers,
pin_memory=True, drop_last=False)
if args.local_rank == 0:
logger.info(f"train loader: {len(train_loader)}")
logger.info(f"val loader: {len(valid_loader)}")
best_preds, valid_labels = self.train_loop(kfold, train_sampler,
train_loader, valid_loader, logger)
return best_preds, valid_labels
def train_loop(self, kfold, train_sampler, train_loader, valid_loader, logger):
best_score = -100
best_preds = []
valid_labels = []
avg_loss = 0.0
# training loop for classification
for epoch in range(self.st_epoch, self.cfg.General.epochs):
train_sampler.set_epoch(epoch)
avg_loss = self.train_one_epoch(train_loader)
if args.local_rank == 0:
# save the lastest checkpoint
torch.save({
'kfold': kfold,
'state_dict': self.model.state_dict(),
'opt': self.optimizer.state_dict(),
'sch': self.scheduler.state_dict()
}, '{}/latest.pth.tar'.format(args.work_dir))
# evaluate on one gpu
if (epoch + 1) % self.cfg.General.eval_interval == 0:
score = self.evaluate_auc(valid_loader, logger)
# save the best model
if args.local_rank == 0:
if best_score < score:
best_score = score
logger.info(f"saving best auc: {best_score}")
torch.save(self.model.state_dict(), os.path.join(args.work_dir, f'fold{kfold}.pth'))
logger.info(f'Fold: {kfold} Epoch {epoch + 1} - avg_train_loss: {avg_loss:.4f} AUC: {score}')
# adjust learning rate
self.scheduler.step()
self.st_epoch = 0
return best_preds, valid_labels
def train_one_epoch(self, loader):
if args.local_rank == 0:
print("training..")
avg_loss = 0.
self.model.train()
for idx, batch in tqdm(enumerate(loader)):
feat, type, label = batch[0].to(device), batch[1].to(device), batch[2].to(device)
logits, _, _, result_dict = self.model(feat, type, label, instance_eval=True)
bag_loss = self.criterion(logits, label)
inst_loss = result_dict["instance_loss"]
loss = bag_loss + 0.3 * inst_loss
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
avg_loss += loss.item() / len(loader)
return avg_loss
def evaluate_auc(self, loader, logger):
self.model.eval()
if args.local_rank == 0:
print("evaluating...")
n_classes = 2
val_loss = 0.
val_error = 0.
acc_logger = Accuracy_Logger(n_classes=n_classes)
prob = np.zeros((len(loader), n_classes))
labels = np.zeros(len(loader))
with torch.no_grad():
for batch_idx, batch in tqdm(enumerate(loader)):
feat, type, label = batch[0].to(device), batch[1].to(device), batch[2].to(device)
instance_eval = False
logits, Y_prob, Y_hat, results_dict = self.model(feat, type, label, instance_eval)
loss = self.criterion(logits, label)
acc_logger.log(Y_hat, label)
val_loss += loss.item()
prob[batch_idx] = Y_prob.cpu().numpy()
labels[batch_idx] = label.item()
error = 1. - Y_hat.float().eq(label.float()).float().mean().item()
val_error += error
val_error /= len(loader)
val_loss /= len(loader)
if n_classes == 2:
auc = roc_auc_score(labels, prob[:, 1])
else:
auc = roc_auc_score(labels, prob, multi_class='ovr')
if args.local_rank == 0:
for i in range(n_classes):
acc, correct, count = acc_logger.get_summary(i)
logger.info('class {}: acc {}, correct {}/{}'.format(i, acc, correct, count))
logger.info('\nVal Set, val_loss: {:.4f}, val_error: {:.4f}, auc: {:.4f}'.format(val_loss, val_error, auc))
print('\nVal Set, val_loss: {:.4f}, val_error: {:.4f}, auc: {:.4f}'.format(val_loss, val_error, auc))
return auc
params = {
"training_framework": "pytorch_ddp",
"enable_optimizations": True
}
@light_init(params)
def main():
# create work_dir
os.makedirs(args.work_dir, exist_ok=True)
# create log file
log_file = os.path.join(args.work_dir, args.log_file)
logger = create_logger(log_file)
# read config
cfg = read_yaml(args.config)
if args.local_rank == 0:
for key, value in cfg.items():
logger.info(f"{key.ljust(30)}: {value}")
# train start
preds_final = []
labels_final = []
# init an object
expt = Experiment(cfg)
st_fold = expt.st_fold
# run one fold for fixed train-test-val split
if not cfg.General.cross_validation:
cfg.General.num_folds = 1
for kfold in range(st_fold, cfg.General.num_folds):
pred, label = expt.run_one_fold(kfold, logger)
preds_final.append(pred)
labels_final.append(label)
# refresh params for a new fold training
expt.refresh()
if __name__ == "__main__":
main()