-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctc_cost.py
473 lines (402 loc) · 16.2 KB
/
ctc_cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""
---------ORIGINAL DOCSTRING------------
CTC-Connectionist Temporal Classification
Code provided by "Mohammad Pezeshki" and "Philemon Brakel"- May. 2015 -
Montreal Institute for Learning Algorithms
Credits: Shawn Tan, Rakesh Var
This code is distributed without any warranty, express or implied.
-------------------------------------------
The doc and the code is slightly edited to interface with
lasagnes output format by Soeren Soenderby.
Examples
--------
>>> import lasagne
>>> from lasagne.nonlinearities import softmax
>>> from lasagne.layers import *
>>> import theano.tensor as T
>>> import theano
>>> import numpy as np
>>> y = T.imatrix('phonemes')
>>> x = T.imatrix()
>>> num_batch, input_seq_len, num_classes = 5, 12, 10
>>> output_seq_len = 5
>>> l_inp = lasagne.layers.InputLayer((num_batch, input_seq_len))
>>> W =np.identity(num_classes+1).astype('float32')
>>> l_emb = EmbeddingLayer(l_inp, num_classes+1, num_classes+1, W=W)
>>> l_rnn = LSTMLayer(l_emb,num_units=10)
>>> l_rnn_shp = ReshapeLayer(l_rnn, (num_batch*input_seq_len, 10))
>>> l_out = DenseLayer(l_rnn_shp, num_units=num_classes+1, nonlinearity=None)
>>> l_out_shp = ReshapeLayer(l_out, (num_batch, input_seq_len, num_classes+1))
>>> l_out_softmax = NonlinearityLayer(l_out, nonlinearity=softmax)
>>> l_out_softmax_shp = ReshapeLayer(
... l_out_softmax, (num_batch, input_seq_len, num_classes+1))
>>> output_lin = lasagne.layers.get_output(l_out_shp, x)
>>> output_softmax = lasagne.layers.get_output(l_out_softmax_shp, x)
>>> all_params = lasagne.layers.get_all_params(trainable=True)
>>> pseudo_cost = ctc_cost.pseudo_cost(y, output_lin)
>>> all_grads = T.grad(pseudo_cost.sum() / num_batch, all_params)
>>> cost = T.mean(ctc_cost.cost(y, output_softmax))
>>> updates = lasagne.updates.rmsprop(all_grads, all_params)
>>> train = theano.function([x, y], [output_softmax, cost], updates=updates)
>>> X = np.random.random_integers(0, num_classes+1,
... size=(num_batch, input_seq_len)).astype('int32')
>>> Y = np.random.random_integers(0, num_classes,
... size=(num_batch, output_seq_len)).astype('int32')
>>> output = train(X,Y)
References
----------
.. [1] Graves, Alex, et al. "Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks."
Proceedings of the 23rd international conference on Machine learning.
ACM, 2006.
"""
import theano
import numpy
from theano import tensor
from theano import tensor as T
floatX = theano.config.floatX
def get_targets(y, log_y_hat, y_mask, y_hat_mask):
"""
Returns the target values according to the CTC cost with respect to y_hat.
Note that this is part of the gradient with respect to the softmax output
and not with respect to the input of the original softmax function.
All computations are done in log scale
"""
# log_y_hat is input_seq_len x num_batch x num_classes + 1
num_classes = log_y_hat.shape[2] - 1
blanked_y, blanked_y_mask = _add_blanks(
y=y,
blank_symbol=num_classes,
y_mask=y_mask)
log_alpha, log_beta = _log_forward_backward(
blanked_y, log_y_hat, blanked_y_mask, y_hat_mask, num_classes)
# explicitly not using a mask to prevent inf - inf
y_prob = _class_batch_to_labeling_batch(blanked_y, log_y_hat,
y_hat_mask=None)
marginals = log_alpha + log_beta - y_prob
max_marg = marginals.max(2)
max_marg = T.switch(T.le(max_marg, -numpy.inf), 0, max_marg)
log_Z = T.log(T.exp(marginals - max_marg[:, :, None]).sum(2))
log_Z = log_Z + max_marg
log_Z = T.switch(T.le(log_Z, -numpy.inf), 0, log_Z)
targets = _labeling_batch_to_class_batch(
blanked_y, T.exp(marginals - log_Z[:, :, None]), num_classes + 1)
return targets
def pseudo_cost(y, y_hat, y_mask=None, mask=None):
"""
Training objective. Computes the marginal label probabilities and returns
the cross entropy between this distribution and y_hat, ignoring the
dependence of the two.
This cost should have the same gradient but hopefully theano will
use a more stable implementation of it.
Parameters
----------
y : matrix (num_batch, target_seq_len)
the target label sequences. dtype: int
y_hat : tensor3 (num_batch, input_seq_len, num_classes + 1)
class probabily distribution sequences, potentially in log domain.
dtype: float
y_mask : matrix (num_batch, target_seq_len)
indicates which values of y to use
dtype: float
mask : matrix (num_batch, input_seq_len)
indicates the lenghts of the sequences in y_hat
dtype: float
Notes
-----
y_hat should be an energy, i.e a un normalized probability.
Examples
--------
TODO
"""
# reshape from lasagnes output format (shift batch and seqlen)
y_hat = y_hat.dimshuffle(1, 0, 2)
y = y.dimshuffle(1, 0)
if y_mask is None:
y_mask = T.ones(y.shape, dtype='float32')
else:
y_mask = y_mask.dimshuffle(1, 0)
if mask is None:
mask = T.ones((y_hat.shape[0], y_hat.shape[1]), dtype='float32')
else:
mask = mask.dimshuffle(1, 0)
y_hat_softmax, log_y_hat_softmax = stable_softmax(y_hat)
targets = get_targets(y, log_y_hat_softmax, y_mask, mask)
mask = mask[:, :, None]
y_hat_grad = y_hat_softmax - targets
return (y_hat * mask *
theano.gradient.disconnected_grad(y_hat_grad)).sum(0).sum(1)
def sequence_log_likelihood(y, y_hat, y_mask, y_hat_mask, blank_symbol):
"""
Based on code from Shawn Tan.
Credits to Kyle Kastner as well.
"""
y_hat_mask_len = tensor.sum(y_hat_mask, axis=0, dtype='int32')
y_mask_len = tensor.sum(y_mask, axis=0, dtype='int32')
log_probabs = _log_path_probabs(
y, T.log(y_hat), y_mask, y_hat_mask, blank_symbol)
batch_size = log_probabs.shape[1]
log_labels_probab = _log_add(
log_probabs[y_hat_mask_len - 1,
tensor.arange(batch_size),
y_mask_len - 1],
log_probabs[y_hat_mask_len - 1,
tensor.arange(batch_size),
y_mask_len - 2])
return log_labels_probab
def cost(y, y_hat_softmax, y_mask=None, mask=None):
"""
Computes the CTC cost using just the forward computations.
The difference between this function and the vanilla 'cost' function
is that this function adds blanks first.
Notes
-----
y_hat should be the output from a softmax layer. This is different from
pseudo_cost which takes energies as input.
Do not calculate the gradient from this cost but use pseudo_cost to
calculate the gradients. This cost function can be used to monitor the
cost during training.
Parameters
----------
y : matrix (num_batch, target_seq_len)
the target label sequences
y_hat_softmax : tensor3 (num_batch, input_seq_len, num_classes + 1)
class probabily distribution sequences, potentially in log domain
y_mask : matrix (num_batch, output_seq_len)
indicates which values of y to use
mask : matrix (num_batch, input_seq_len)
indicates the lenghts of the sequences in y_hat
"""
# dimshuffle from lasagnes output format
y_hat_softmax = y_hat_softmax.dimshuffle(1, 0, 2)
y = y.dimshuffle(1, 0)
if y_mask is None:
y_mask = T.ones(y.shape,
dtype=theano.config.floatX)
else:
y_mask = y_mask.dimshuffle(1, 0)
if mask is None:
mask = T.ones((y_hat_softmax.shape[0], y_hat_softmax.shape[1]),
dtype=theano.config.floatX)
else:
mask = mask.dimshuffle(1, 0)
num_classes = y_hat_softmax.shape[2] - 1
blanked_y, blanked_y_mask = _add_blanks(
y=y,
blank_symbol=num_classes,
y_mask=y_mask)
final_cost = -sequence_log_likelihood(blanked_y, y_hat_softmax,
blanked_y_mask, mask,
num_classes)
return final_cost
def _add_blanks(y, blank_symbol, y_mask=None):
"""Add blanks to a matrix and updates mask
Input shape: output_seq_len x num_batch
Output shape: 2*output_seq_len+1 x num_batch
"""
# for y
y_extended = y.T.dimshuffle(0, 1, 'x')
blanks = tensor.zeros_like(y_extended) + blank_symbol
concat = tensor.concatenate([y_extended, blanks], axis=2)
res = concat.reshape((concat.shape[0],
concat.shape[1] * concat.shape[2])).T
begining_blanks = tensor.zeros((1, res.shape[1])) + blank_symbol
blanked_y = tensor.concatenate([begining_blanks, res], axis=0)
# for y_mask
if y_mask is not None:
y_mask_extended = y_mask.T.dimshuffle(0, 1, 'x')
concat = tensor.concatenate([y_mask_extended,
y_mask_extended], axis=2)
res = concat.reshape((concat.shape[0],
concat.shape[1] * concat.shape[2])).T
begining_blanks = tensor.ones((1, res.shape[1]), dtype=floatX)
blanked_y_mask = tensor.concatenate([begining_blanks, res], axis=0)
else:
blanked_y_mask = None
return blanked_y.astype('int32'), blanked_y_mask
def _class_batch_to_labeling_batch(y, y_hat, y_hat_mask=None):
"""
Convert (input_seq_len, num_batch, num_classes) tensor into
(input_seq_len, num_batch, output_seq_len) tensor.
Notes
-----
T: number of time steps
B: batch size
L: length of label sequence
C: number of classes
Parameters
----------
y : matrix (L, B)
the target label sequences
y_hat : tensor3 (T, B, C+1)
class probabily distribution sequences
y_hat_mask : matrix (T, B)
indicates the lenghts of the sequences in y_hat
Returns
-------
tensor3 (T, B, L):
A tensor that contains the probabilities per time step of the
labels that occur in the target sequence.
"""
if y_hat_mask is not None:
y_hat = y_hat * y_hat_mask[:, :, None]
batch_size = y_hat.shape[1]
y_hat = y_hat.dimshuffle(0, 2, 1)
res = y_hat[:, y.astype('int32'), T.arange(batch_size)]
return res.dimshuffle(0, 2, 1)
def _recurrence_relation(y, y_mask, blank_symbol):
"""
Construct a permutation matrix and tensor for computing CTC transitions.
Parameters
----------
y : matrix (L, B)
the target label sequences
y_mask : matrix (L, B)
indicates which values of y to use
blank_symbol: integer
indicates the symbol that signifies a blank label.
Returns
-------
matrix (L, L)
tensor3 (L, L, B)
"""
n_y = y.shape[0]
blanks = tensor.zeros((2, y.shape[1])) + blank_symbol
ybb = tensor.concatenate((y, blanks), axis=0).T
sec_diag = (tensor.neq(ybb[:, :-2], ybb[:, 2:]) *
tensor.eq(ybb[:, 1:-1], blank_symbol) *
y_mask.T)
# r1: LxL
# r2: LxL
# r3: LxLxB
eye2 = tensor.eye(n_y + 2)
r2 = eye2[2:, 1:-1] # tensor.eye(n_y, k=1)
r3 = (eye2[2:, :-2].dimshuffle(0, 1, 'x') *
sec_diag.dimshuffle(1, 'x', 0))
return r2, r3
def _log_path_probabs(y, log_y_hat, y_mask, y_hat_mask, blank_symbol,
reverse=False):
"""
Uses dynamic programming to compute the path probabilities.
Notes
-----
T: number of time steps
B: batch size
L: length of label sequence
C: number of classes
Parameters
----------
y : matrix (L, B)
the target label sequences
log_y_hat : tensor3 (T, B, C)
log class probabily distribution sequences
y_mask : matrix (L, B)
indicates which values of y to use
y_hat_mask : matrix (T, B)
indicates the lenghts of the sequences in log_y_hat
blank_symbol: integer
indicates the symbol that signifies a blank label.
Returns
-------
tensor3 (T, B, L):
the log forward probabilities for each label at every time step.
masked values should be -inf
"""
n_labels, batch_size = y.shape
if reverse:
y = y[::-1]
log_y_hat = log_y_hat[::-1]
y_hat_mask = y_hat_mask[::-1]
y_mask = y_mask[::-1]
# going backwards, the first non-zero alpha value should be the
# first non-masked label.
start_positions = T.cast(n_labels - y_mask.sum(0), 'int64')
else:
start_positions = T.zeros((batch_size,), dtype='int64')
log_pred_y = _class_batch_to_labeling_batch(y, log_y_hat, y_hat_mask)
log_pred_y = log_pred_y.dimshuffle(0, 2, 1)
r2, r3 = _recurrence_relation(y, y_mask, blank_symbol)
r2, r3 = T.log(r2), T.log(r3)
def step(log_p_curr, y_hat_mask_t, log_p_prev):
p1 = log_p_prev
p2 = _log_dot_matrix(p1, r2)
p3 = _log_dot_tensor(p1, r3)
p12 = _log_add(p1, p2)
p123 = _log_add(p3, p12)
y_hat_mask_t = y_hat_mask_t[:, None]
out = log_p_curr.T + p123 + T.log(y_mask.T)
return _log_add(T.log(y_hat_mask_t) + out,
T.log(1 - y_hat_mask_t) + log_p_prev)
log_probabilities, _ = theano.scan(
step,
sequences=[log_pred_y, y_hat_mask],
outputs_info=[T.log(tensor.eye(n_labels)[start_positions])])
return log_probabilities + T.log(y_hat_mask[:, :, None])
def _log_forward_backward(y, log_y_hat, y_mask, y_hat_mask, blank_symbol):
log_probabs_forward = _log_path_probabs(y,
log_y_hat,
y_mask,
y_hat_mask,
blank_symbol)
log_probabs_backward = _log_path_probabs(y,
log_y_hat,
y_mask,
y_hat_mask,
blank_symbol,
reverse=True)
return log_probabs_forward, log_probabs_backward[::-1][:, :, ::-1]
def _labeling_batch_to_class_batch(y, y_labeling, num_classes,
y_hat_mask=None):
# FIXME: y_hat_mask is currently not used
batch_size = y.shape[1]
N = y_labeling.shape[0]
n_labels = y.shape[0]
# sum over all repeated labels
# from (T, B, L) to (T, C, B)
out = T.zeros((num_classes, batch_size, N))
y_labeling = y_labeling.dimshuffle((2, 1, 0)) # L, B, T
y_ = y
def scan_step(index, prev_res, y_labeling, y_):
res_t = T.inc_subtensor(prev_res[y_[index, T.arange(batch_size)],
T.arange(batch_size)],
y_labeling[index, T.arange(batch_size)])
return res_t
result, updates = theano.scan(scan_step,
sequences=[T.arange(n_labels)],
non_sequences=[y_labeling, y_],
outputs_info=[out])
# result will be (C, B, T) so we make it (T, B, C)
return result[-1].dimshuffle(2, 1, 0)
def _log_add(a, b):
# TODO: move functions like this to utils
max_ = tensor.maximum(a, b)
result = (max_ + tensor.log1p(tensor.exp(a + b - 2 * max_)))
return T.switch(T.isnan(result), max_, result)
def _log_dot_matrix(x, z):
y = x[:, :, None] + z[None, :, :]
y_max = y.max(axis=1)
out = T.log(T.sum(T.exp(y - y_max[:, None, :]), axis=1)) + y_max
return T.switch(T.isnan(out), -numpy.inf, out)
def _log_dot_tensor(x, z):
log_dot = x.dimshuffle(1, 'x', 0) + z
max_ = log_dot.max(axis=0)
out = (T.log(T.sum(T.exp(log_dot - max_[None, :, :]), axis=0)) + max_)
out = out.T
return T.switch(T.isnan(out), -numpy.inf, out)
def stable_softmax(y_hat):
"""Calculate softmax and log softmax in numerically stable way
Parameters
----------
y_hat : tensor3 (input_seq_len, num_batch, num_classes+1)
class energies
Return
------
softmax values in normal and log domain
"""
y_hat_safe = y_hat - y_hat.max(axis=2, keepdims=True)
y_hat_safe_exp = T.exp(y_hat_safe)
y_hat_safe_normalizer = y_hat_safe_exp.sum(axis=2, keepdims=True)
log_y_hat_safe_normalizer = T.log(y_hat_safe_normalizer)
y_hat_softmax = y_hat_safe_exp / y_hat_safe_normalizer
log_y_hat_softmax = y_hat_safe - log_y_hat_safe_normalizer
return y_hat_softmax, log_y_hat_softmax