-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
380 lines (337 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from torch_geometric.utils import to_undirected, remove_self_loops
from sklearn.metrics import roc_auc_score
import torch.nn.functional as fn
import torch.optim as optim
import torch.nn as nn
import torch.autograd
import torch
import numpy as np
import tempfile
import random
from dataset import load_nc_dataset
from model.DSF_GPR_I import DSF_GPR_I
from model.DSF_GPR_R import DSF_GPR_R
from model.DSF_Bern_I import DSF_Bern_I
from model.DSF_Bern_R import DSF_Bern_R
from model.DSF_Jacobi import DSF_Jacobi_I, DSF_Jacobi_R
def log_print(args, str):
if not args.hpm_opt_mode:
print(str)
def eval_acc(targ, prob):
# generalized version for both single/multi-label classification
pred = prob.max(dim=-1)[1].type_as(targ)
acc = pred.eq(targ.squeeze(dim=-1)).double().sum() / targ.numel()
acc = acc.item()
return acc
def eval_rocauc(y_true, y_pred):
"""
adopted from
https://github.com/snap-stanford/ogb/blob/master/ogb/nodeproppred/evaluate.py
https://github.com/CUAI/Non-Homophily-Benchmarks/blob/main/data_utils.py
"""
rocauc_list = []
y_true = y_true.detach().cpu().numpy()
if y_true.shape[1] == 1:
# use the predicted class for single-class classification
y_pred = fn.softmax(y_pred, dim=-1)[:, 1].unsqueeze(1).detach().cpu().numpy()
else:
y_pred = y_pred.detach().cpu().numpy()
for i in range(y_true.shape[1]):
# AUC is only defined when there is at least one positive data.
if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == 0) > 0:
is_labeled = y_true[:, i] == y_true[:, i]
score = roc_auc_score(y_true[is_labeled, i], y_pred[is_labeled, i])
rocauc_list.append(score)
if len(rocauc_list) == 0:
raise RuntimeError(
'No positively labeled data available. Cannot compute ROC-AUC.')
return sum(rocauc_list) / len(rocauc_list)
def keep2decimal(x):
return format(x, ".2f")
def get_rnd_seed():
# return a random seed in 6 numbers
return np.random.randint(99999, 999999)
def set_rng_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def parse_model(args, c, d, device):
if args.method == "DSF_GPR_R":
model = DSF_GPR_R(d, args.hidden_channels, c, args, args.pe_indim, args.pe_hid_dim, args.PE_alpha).to(device)
elif args.method == "DSF_GPR_I":
model = DSF_GPR_I(d, args.hidden_channels, c, args, args.pe_indim, args.pe_hid_dim, args.PE_alpha, args.PE_beta).to(device)
elif args.method == "DSF_Bern_R":
model = DSF_Bern_R(d, args.hidden_channels, c, args, args.pe_indim, args.pe_hid_dim, args.PE_alpha).to(device)
elif args.method == "DSF_Bern_I":
model = DSF_Bern_I(d, args.hidden_channels, c, args, args.pe_indim, args.pe_hid_dim, args.PE_alpha, args.PE_beta).to(device)
elif args.method == "DSF_Jacobi_R":
model = DSF_Jacobi_R(args.alpha, args.dpb, args.dpt, d, c, sole=args.mysole,
PE_dropout=args.PE_dropout, PE_in_dim=args.pe_indim, PE_hid_dim=args.pe_hid_dim,
PE_alpha=args.PE_alpha,
a=args.a, b=args.b).to(device)
elif args.method == "DSF_Jacobi_I":
model = DSF_Jacobi_I(args.alpha, args.dpb, args.dpt, d, c, sole=args.mysole,
PE_dropout=args.PE_dropout, PE_in_dim=args.pe_indim, PE_hid_dim=args.pe_hid_dim,
PE_alpha=args.PE_alpha, PE_beta=args.PE_beta,
a=args.a, b=args.b).to(device)
else:
raise ValueError('Invalid method')
return model
class PE_reg_loss(nn.Module):
def __init__(self, edge_index, pe_hid_dim, dev, pe_normalize=False):
super(PE_reg_loss, self).__init__()
self.edge_index = edge_index
self.pe_hid_dim = pe_hid_dim
self.identity_mat = torch.eye(pe_hid_dim).to(dev)
self.pe_normalize = pe_normalize
def forward(self, pe):
if self.pe_normalize:
pe = pe - torch.mean(pe, dim=0, keepdim=True)
pe = fn.normalize(pe, dim=0, p=2)
# ort-loss
if self.pe_normalize:
PTP_In = torch.matmul(pe.T, pe) - self.identity_mat
else:
PTP_In = torch.matmul(pe.T, pe).fill_diagonal_(0)
pe_ort_loss = torch.pow(torch.norm(PTP_In, "fro"), 2) / self.pe_hid_dim
return pe_ort_loss
class EvalHelper:
def __init__(self, args):
use_cuda = torch.cuda.is_available() and not args.cpu
dev = torch.device('cuda' if use_cuda else 'cpu')
# load data
dataset = load_nc_dataset(args.dataset, args.sub_dataset)
dataset.graph["edge_index"] = remove_self_loops(dataset.graph["edge_index"])[0]
dataset.graph['edge_index'] = to_undirected(dataset.graph['edge_index'])
dataset.graph["pos_enc"] = torch.load(f"{args.DATAPATH}node_pos_enc/{args.pos_enc_type}_{args.dataset}_indim_{args.pe_indim}.pt")
c = dataset.label.max().item() + 1
d = dataset.graph['node_feat'].shape[1]
log_print(args, "Load a random split: trn/val/tst=60%/20%/20%")
split_dic = np.load(f"{args.DATAPATH}{args.dataset}_{args.sub_dataset}_randomSplit.npy", allow_pickle=True).item()
trn_idx, val_idx, tst_idx = split_dic["trn_idx"], split_dic["val_idx"], split_dic["tst_idx"]
assert len(set(trn_idx).intersection(val_idx)) == 0
assert len(set(trn_idx).intersection(tst_idx)) == 0
assert len(set(val_idx).intersection(tst_idx)) == 0
# data to cuda
trn_idx = torch.from_numpy(trn_idx).to(dev)
val_idx = torch.from_numpy(val_idx).to(dev)
tst_idx = torch.from_numpy(tst_idx).to(dev)
if len(dataset.label.shape) == 1:
dataset.label = dataset.label.unsqueeze(1)
dataset.label = dataset.label.to(dev)
dataset.graph['edge_index'] = dataset.graph['edge_index'].to(dev)
dataset.graph['node_feat'] = dataset.graph['node_feat'].to(dev)
dataset.graph['pos_enc'] = dataset.graph['pos_enc'].to(dev)
# model configs
_, dsf_bse, dsf_mode = args.method.split("_")
assert dsf_bse in ["GPR", "Bern", "Jacobi"]
assert dsf_mode in ["I", "R"]
model = parse_model(args, c, d, dev)
pe_reg_loss = PE_reg_loss(dataset.graph['edge_index'], args.pe_hid_dim, dev, args.pe_normalize).to(dev)
if dsf_bse == "Jacobi":
optmz = optim.Adam([{
'params': model.emb.parameters(),
'weight_decay': args.wd1,
'lr': args.lr1
}, {
'params': model.comb.parameters(),
'weight_decay': args.wd3,
'lr': args.lr3
}, {
'params': model.pe_agg.parameters(),
'weight_decay': args.wd4,
'lr': args.lr4
}])
else:
all_params = model.parameters()
optmz = optim.Adam(all_params, lr=args.lr, weight_decay=args.reg)
# bce/rocauc as the loss/eval function for twitch-e dataset
loss_fn = nn.BCEWithLogitsLoss() if args.dataset == 'twitch-e' else nn.NLLLoss()
eval_fn = eval_rocauc if args.dataset == 'twitch-e' else eval_acc
self.dataset = dataset
self.trn_idx, self.val_idx, self.tst_idx = trn_idx, val_idx, tst_idx
self.model, self.optmz = model, optmz
self.dsf_bse, self.dsf_mode = dsf_bse, dsf_mode
self.loss_fn, self.eval_fn = loss_fn, eval_fn
self.pe_reg_loss = pe_reg_loss
self.args = args
def before_loss(self, args, out):
if args.dataset == 'twitch-e':
true_label = fn.one_hot(self.dataset.label, self.dataset.label.max() + 1).type(out.dtype)
else:
true_label = self.dataset.label
out = fn.log_softmax(out, dim=1)
return out, true_label
def run_epoch(self, args):
self.model.train()
self.optmz.zero_grad()
if self.dsf_bse == "Jacobi":
out, pe = self.model(self.dataset.graph['node_feat'], self.dataset.graph['edge_index'], torch.ones_like(self.dataset.graph['edge_index'][0]), pe=self.dataset.graph['pos_enc'])
else:
out, pe = self.model(self.dataset)
out, true_label = self.before_loss(args, out)
task_loss = self.loss_fn(out[self.trn_idx], true_label.squeeze(1)[self.trn_idx])
if self.dsf_mode == "R":
pe_ort_loss = self.pe_reg_loss(pe)
loss = task_loss + args.ort_pe_lambda * pe_ort_loss
else:
loss = task_loss
loss.backward()
self.optmz.step()
if self.dsf_mode == "R":
log_print(args, "epoch-loss={:.4f}, task-loss={:.4f}, pe-orth-loss={:.4f}".format(loss.item(), task_loss.item(), pe_ort_loss.item()))
else:
log_print(args, "epoch-loss={:.4f}".format(loss.item()))
return loss.item()
def evaluate(self):
self.model.eval()
if self.dsf_bse == "Jacobi":
out, _ = self.model(self.dataset.graph['node_feat'], self.dataset.graph['edge_index'], torch.ones_like(self.dataset.graph['edge_index'][0]), pe=self.dataset.graph['pos_enc'])
else:
out, _ = self.model(self.dataset)
trn_acc = self.eval_fn(self.dataset.label[self.trn_idx], out[self.trn_idx])
val_acc = self.eval_fn(self.dataset.label[self.val_idx], out[self.val_idx])
tst_acc = self.eval_fn(self.dataset.label[self.tst_idx], out[self.tst_idx])
return trn_acc, val_acc, tst_acc
def model_run(args):
# random initialization
set_rng_seed(args.rnd_seed)
# build model
agent = EvalHelper(args)
# model-training
wait_cnt = 0
best_val_acc = 0.0
best_model_sav = tempfile.TemporaryFile()
for t in range(args.nepoch):
agent.run_epoch(args)
trn_acc, val_acc, tst_acc = agent.evaluate()
log_print(args, "epoch: {}/{}, trn-acc={:.4f}%, val-acc={:.4f}%, tst-acc={:.4f}%".format(
t + 1, args.nepoch, trn_acc * 100, val_acc * 100, tst_acc * 100))
# early-stop
if val_acc > best_val_acc:
wait_cnt = 0
best_val_acc = val_acc
best_model_sav.close()
best_model_sav = tempfile.TemporaryFile()
torch.save(agent.model.state_dict(), best_model_sav)
else:
wait_cnt += 1
if wait_cnt > args.early:
break
# final results
log_print(args, "Load selected model ...")
best_model_sav.seek(0)
agent.model.load_state_dict(torch.load(best_model_sav))
trn_acc, val_acc, tst_acc = agent.evaluate()
return val_acc, tst_acc
def DSF(args):
args.rnd_seed = get_rnd_seed()
val_acc, tst_acc = model_run(args)
log_print(args, f"{args.method} evaluated on {args.dataset}_{args.sub_dataset}:"
f" val-acc={keep2decimal(val_acc * 100)}%, tst-acc={keep2decimal(tst_acc * 100)}%")
def config(args):
########################################################################
args.method = "DSF_GPR_R"
args.dataset = "chameleon"
args.pos_enc_type = "RW_PE"
args.pe_normalize = False
args.reg = 3e-7
args.lr = 0.05
args.dropout = 0.3
args.dprate = 0.7
args.PE_dropout = 0
args.PE_alpha = 0.9
args.pe_indim = 24
args.ort_pe_lambda = 0.5
args.Init = "PPR"
args.alpha = 0.9
########################################################################
# args.method = "DSF_GPR_I"
# args.dataset = "chameleon"
# args.pos_enc_type = "LAP_PE"
# args.reg = 3e-7
# args.lr = 0.07
# args.dropout = 0.2
# args.dprate = 0.7
# args.PE_dropout = 0.4
# args.PE_alpha = 1
# args.pe_indim = 30
# args.Init = "NPPR"
# args.alpha = 0.2
# args.PE_beta = 0.5
########################################################################
# args.method = "DSF_Bern_R"
# args.dataset = "chameleon"
# args.pos_enc_type = "RW_PE"
# args.pe_normalize = False
# args.reg = 8e-7
# args.lr = 0.07
# args.dropout = 0.2
# args.dprate = 0.7
# args.PE_dropout = 0
# args.PE_alpha = 0.6
# args.pe_indim = 2
# args.ort_pe_lambda = 0.6
########################################################################
# args.method = "DSF_Bern_I"
# args.dataset = "chameleon"
# args.pos_enc_type = "LAP_PE"
# args.reg = 1e-7
# args.lr = 0.09
# args.dropout = 0.1
# args.dprate = 0.7
# args.PE_dropout = 0.6
# args.PE_alpha = 1
# args.pe_indim = 14
# args.PE_beta = 0.2
########################################################################
# args.method = "DSF_Jacobi_R"
# args.dataset = "chameleon"
# args.pos_enc_type = "RW_PE"
# args.mysole = True
# args.pe_normalize = True
# args.ort_pe_lambda = 1.0
# args.PE_dropout = 0.1
# args.PE_alpha = 0.5
# args.pe_indim = 24
# args.lr1 = 0.09
# args.lr3 = 0.02
# args.lr4 = 0.02
# args.wd1 = 4e-7
# args.wd3 = 9e-6
# args.wd4 = 7e-5
# args.alpha = 1.0
# args.a = 0
# args.b = 0.5
# args.dpb = 0.7
# args.dpt = 0.1
########################################################################
# args.method = "DSF_Jacobi_I"
# args.dataset = "chameleon"
# args.pos_enc_type = "LAP_PE"
# args.mysole = True
# args.PE_dropout = 0.1
# args.PE_alpha = 0.5
# args.PE_beta = 0.8
# args.pe_indim = 30
# args.lr1 = 0.06
# args.lr3 = 0.06
# args.lr4 = 0.06
# args.wd1 = 9e-8
# args.wd3 = 4e-7
# args.wd4 = 1e-3
# args.alpha = 1
# args.a = 0.2
# args.b = 0.5
# args.dpb = 0.6
# args.dpt = 0.2
########################################################################
return args
def main():
from parse import args
DSF(config(args))
if __name__ == '__main__':
main()