-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathddp_train.py
268 lines (210 loc) · 9.4 KB
/
ddp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import time
from glob import glob
import numpy as np
import torch
import torch.optim as optim
from torch import distributed as dist
from torch import multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, DistributedSampler
try:
import wandb
except ImportError:
pass
import configs.config_loader as cfg_loader
import models.data.voxelized_data_shapenet as voxelized_data
import models.local_model as model
def convertMillis(millis):
seconds = int((millis / 1000) % 60)
minutes = int((millis / (1000 * 60)) % 60)
hours = int((millis / (1000 * 60 * 60)))
return hours, minutes, seconds
def convertSecs(sec):
seconds = int(sec % 60)
minutes = int((sec / 60) % 60)
hours = int((sec / (60 * 60)))
return hours, minutes, seconds
def setup(rank, world_size, port="10239"):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = port
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def launch(main_fn, cfg, world_size):
mp.spawn(main_fn, args=(world_size, cfg), nprocs=world_size, join=True)
def ddp_trainer(rank, world_size, cfg):
setup(rank, world_size)
net = model.GIFS()
device = torch.device(rank)
net = net.to(rank)
net = DDP(net, device_ids=[rank])
train_dataset = voxelized_data.VoxelizedDataset(
"train",
res=cfg.input_res,
pointcloud_samples=cfg.num_points,
data_path=cfg.data_dir,
split_file=cfg.split_file,
batch_size=cfg.batch_size,
num_sample_points=cfg.num_sample_points_training,
num_workers=30,
sample_distribution=cfg.sample_ratio,
sample_sigmas=cfg.sample_std_dev,
)
train_sampler = DistributedSampler(train_dataset)
train_data_loader = DataLoader(train_dataset, batch_size=cfg.batch_size, sampler=train_sampler)
val_dataset = voxelized_data.VoxelizedDataset(
"val",
res=cfg.input_res,
pointcloud_samples=cfg.num_points,
data_path=cfg.data_dir,
split_file=cfg.split_file,
batch_size=cfg.batch_size,
num_sample_points=cfg.num_sample_points_training,
num_workers=30,
sample_distribution=cfg.sample_ratio,
sample_sigmas=cfg.sample_std_dev,
)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_data_loader = DataLoader(val_dataset, batch_size=cfg.batch_size, sampler=val_sampler)
if cfg.optimizer == "Adam":
optimizer = optim.Adam(net.parameters(), lr=cfg.lr)
if cfg.optimizer == "Adadelta":
optimizer = optim.Adadelta(net.parameters())
if cfg.optimizer == "RMSprop":
optimizer = optim.RMSprop(net.parameters(), momentum=0.9)
exp_path = os.path.dirname(__file__) + "/experiments/{}/".format(cfg.exp_name)
checkpoint_path = exp_path + "checkpoints/".format(cfg.exp_name)
if not os.path.exists(checkpoint_path):
if rank == 0:
print(checkpoint_path)
os.makedirs(checkpoint_path)
# if rank == 0:
# writer = SummaryWriter(exp_path + 'summary'.format(cfg.exp_name))
if rank == 0 and cfg.use_wandb:
wandb.init(project="general_shape", dir=exp_path, config=cfg, name=cfg.exp_name)
val_min = 1e8
max_dist = 0.1
start, training_time = 0, 0
# ===== load checkpoint =====
checkpoints = glob(checkpoint_path + "/*")
if len(checkpoints) == 0:
if rank == 0:
print("No checkpoints found at {}".format(checkpoint_path))
else:
checkpoints = [os.path.splitext(os.path.basename(path))[0].split("_")[-1] for path in checkpoints]
checkpoints = np.array(checkpoints, dtype=float)
checkpoints = np.sort(checkpoints)
path = checkpoint_path + "checkpoint_{}h:{}m:{}s_{}.tar".format(
*[*convertSecs(checkpoints[-1]), checkpoints[-1]]
)
if rank == 0:
print("Loaded checkpoint from: {}".format(path))
checkpoint = torch.load(path, map_location=f"cuda:{rank}")
net.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start = checkpoint["epoch"]
training_time = checkpoint["training_time"]
val_min = checkpoint["val_min"]
dist.barrier()
# ===== train model =====
loss = 0
iteration_start_time = time.time()
for epoch in range(start, cfg.num_epochs):
sum_loss = 0
if rank == 0:
print("Start epoch {}".format(epoch))
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
for batch in train_data_loader:
iteration_duration = time.time() - iteration_start_time
# ==== save checkpoint and val ====
save_ckpt_flag = iteration_duration > 60 * 60
save_ckpt_flag_tensor = torch.tensor(save_ckpt_flag).int().to(device)
dist.broadcast(save_ckpt_flag_tensor, src=0)
if save_ckpt_flag_tensor.item() == 1: # save model every X min and at start
training_time += iteration_duration
iteration_start_time = time.time()
path = checkpoint_path + "checkpoint_{}h:{}m:{}s_{}.tar".format(
*[*convertSecs(training_time), training_time]
)
if rank == 0:
if not os.path.exists(path):
torch.save(
{ # 'state': torch.cuda.get_rng_state_all(),
"training_time": training_time,
"epoch": epoch,
"model_state_dict": net.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"val_min": val_min,
},
path,
)
net.eval()
sum_val_loss = 0
num_batches = 125 # val_data_num = num_batches * batch_size
val_data_iterator = val_data_loader.__iter__()
for _ in range(num_batches):
try:
val_batch = val_data_iterator.next()
except:
val_data_iterator = val_data_loader.__iter__()
val_batch = val_data_iterator.next()
p = val_batch.get("grid_coords").to(device)
df_gt = val_batch.get("df").to(device) # (Batch,num_points)
inputs = val_batch.get("inputs").to(device)
with torch.no_grad():
label_gt = val_batch.get("labels").squeeze(2).to(device)
with torch.cuda.amp.autocast():
pred_dict = net(p, inputs)
df_pred = pred_dict["udf"].float()
label_pred = pred_dict["pred"].float()
# out = (B,num_points) by componentwise comparing vecots of size num_samples:
loss_i = torch.nn.L1Loss()(torch.clamp(df_pred, max=max_dist), torch.clamp(df_gt, max=max_dist))
loss_gifs = torch.nn.L1Loss()(label_pred, label_gt)
loss = loss_i * 10 + loss_gifs
sum_val_loss += loss.item()
val_loss = sum_val_loss / num_batches
val_loss_tensor = torch.tensor(val_loss).to(device)
dist.all_reduce(val_loss_tensor)
val_loss = val_loss_tensor.item() / world_size
if val_loss < val_min:
val_min = val_loss
if rank == 0:
for path in glob(exp_path + "val_min=*"):
os.remove(path)
np.save(
exp_path
+ "val_min={}training_time={}h:{}m:{}s".format(*[epoch, *convertSecs(training_time)]),
[epoch, val_loss],
)
if rank == 0 and cfg.use_wandb:
wandb.log({"val_loss": val_loss, "epoch": epoch})
dist.barrier()
# ==== optimize model ====
net.train()
optimizer.zero_grad()
p = batch.get("grid_coords").to(device)
df_gt = batch.get("df").to(device) # (Batch,num_points)
inputs = batch.get("inputs").to(device)
label_gt = batch.get("labels").squeeze(2).to(device)
pred_dict = net(p, inputs)
df_pred = pred_dict["udf"]
label_pred = pred_dict["pred"]
loss_i = torch.nn.L1Loss()(torch.clamp(df_pred, max=max_dist), torch.clamp(df_gt, max=max_dist))
loss_gifs = torch.nn.L1Loss()(label_pred, label_gt)
loss = loss_i * 10 + loss_gifs
loss.backward()
optimizer.step()
if rank == 0:
print("Current loss: {}".format(loss / train_dataset.num_sample_points))
sum_loss += loss
if rank == 0 and cfg.use_wandb:
wandb.log({"train_loss_last_batch": loss, "epoch": epoch})
wandb.log({"train_loss_avg": sum_loss / len(train_data_loader), "epoch": epoch})
cleanup()
if __name__ == "__main__":
cfg = cfg_loader.get_config()
n_gpus = torch.cuda.device_count()
launch(ddp_trainer, cfg, n_gpus)