-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_ddp.py
233 lines (179 loc) · 9.58 KB
/
finetune_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets
from torchvision import transforms
import torch.nn.functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from models.model import CLIPEncoder, Decoder
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from lavis.datasets.builders import load_dataset
from lavis.common.registry import registry
import timm
import torchvision
from util import train_collate_fn
import argparse
class DirectMatchingLoss(nn.Module):
def __init__(self):
super(DirectMatchingLoss, self).__init__()
def forward(self, image_features, text_features):
cos_sim = torch.cosine_similarity(image_features, text_features, dim=-1)
loss = -cos_sim.mean()
return loss
class BiContrastiveLoss(nn.Module):
def __init__(self, temperature=0.07):
super(BiContrastiveLoss, self).__init__()
self.temperature = temperature
def forward(self, image_features, text_features):
image_features = F.normalize(image_features, p=2, dim=1)
text_features = F.normalize(text_features, p=2, dim=1)
cos_sim = torch.matmul(image_features, text_features.t()) / self.temperature
labels = torch.eye(cos_sim.size(0), device=cos_sim.device)
loss_i2t = -torch.sum(labels * F.log_softmax(cos_sim, dim=1), dim=1).mean()
loss_t2i = -torch.sum(labels * F.log_softmax(cos_sim.t(), dim=1), dim=1).mean()
loss = (loss_i2t + loss_t2i) / 2
avg_similarity = torch.diag(torch.matmul(image_features, text_features.t())).mean()
return loss, avg_similarity
def cycle(iterable):
while True:
for x in iterable:
yield x
def select_criterion(args, criterion, embed_adv, embed_tar):
if args.criterion == 'BiContrastiveLoss':
loss, observer = criterion(embed_adv, embed_tar)
elif args.criterion == 'Cosine':
loss = criterion(embed_adv, embed_tar)
observer = -loss
else:
raise NameError
return loss, observer
def make_dataloader(args, batch_size, rank, world_size):
transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
coco_dataset = load_dataset(args.dataset, vis_path=args.data_dir)
train_dataset = coco_dataset['train']
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=4, pin_memory=True, shuffle=False,
sampler=train_sampler, collate_fn=train_collate_fn, drop_last=True)
imagenet_dataset = torchvision.datasets.ImageFolder(args.imagenet, transform=transform)
imagenet_sampler = torch.utils.data.distributed.DistributedSampler(imagenet_dataset, num_replicas=world_size,
rank=rank)
data_loader_imagenet = DataLoader(imagenet_dataset, batch_size=batch_size, shuffle=False,
num_workers=4, pin_memory=True, drop_last=True, sampler=imagenet_sampler)
return train_data_loader, data_loader_imagenet
def train(args):
dist.init_process_group(backend='nccl') # Initialize the process group for distributed training
rank = dist.get_rank() # Get the rank of the current process
world_size = dist.get_world_size() # Get total number of processes (GPUs)
device = torch.device(f'cuda:{rank}') # Set the device for the current process
torch.cuda.set_device(device) # Ensure that each process uses the correct GPU
clip_encoder = CLIPEncoder('ViT-B/32').to(device)
decoder = Decoder(embed_dim=512).to(device)
# Models for auxiliary loss computation
eva_encoder = timm.create_model("hf_hub:timm/eva02_large_patch14_448.mim_m38m_ft_in1k", num_classes=0,
pretrained=True).to(device).eval()
imagenet_encoder = torchvision.models.vit_b_16(pretrained=True).to(device).eval()
imagenet_encoder.head = torch.nn.Identity()
if args.checkpoint != 'scratch':
checkpoint = torch.load(args.checkpoint, map_location=device)
decoder.load_state_dict(checkpoint['decoder_state_dict'])
# Wrap models with DistributedDataParallel (DDP)
decoder = DDP(decoder, device_ids=[rank])
# Optimizer, scheduler, and scaler
optimizer = torch.optim.AdamW(decoder.parameters(), args.lr)
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=5000, T_mult=1)
scaler = GradScaler()
# Criterion based on args
if args.criterion == 'BiContrastiveLoss':
criterion = BiContrastiveLoss()
elif args.criterion == 'Cosine':
criterion = DirectMatchingLoss()
else:
raise ValueError
train_loader, data_loader_imagenet = make_dataloader(args, args.batch_size, rank, world_size)
data_loader_imagenet_cycle = cycle(data_loader_imagenet)
start_epoch = 0
for epoch in range(start_epoch, args.epoch):
total_loss = 0
total_observer_clip = 0
total_observer_eva = 0
total_observer_imagenet = 0
global_step = 0
for batch_idx, batch in enumerate(train_loader):
images = batch['image'].to(device)
with autocast():
optimizer.zero_grad()
with torch.no_grad():
embed_tar = clip_encoder.encode_img(images) # CLIP encoder
images_ori, _ = next(data_loader_imagenet_cycle)
# Get target embeddings from auxiliary models
images_eva = F.interpolate(images, size=(448, 448), mode='bilinear')
embed_tar_eva = eva_encoder(images_eva)
embed_tar_imagenet = imagenet_encoder(images)
noise = decoder(embed_tar)
noise = torch.clamp(noise, -args.eps, args.eps)
images_adv = torch.clamp(noise + images_ori.to(device), 0, 1)
embed_adv = clip_encoder.encode_img(images_adv) # CLIP adversarial embedding
# Adversarial embeddings for auxiliary models
images_adv_eva = F.interpolate(images_adv, size=(448, 448), mode='bilinear')
embed_adv_eva = eva_encoder(images_adv_eva)
embed_adv_imagenet = imagenet_encoder(images_adv)
# Compute all three losses and observers
loss, observer_clip = select_criterion(args, criterion, embed_adv, embed_tar)
loss_eva, observer_eva = select_criterion(args, criterion, embed_adv_eva, embed_tar_eva)
loss_imagenet, observer_imagenet = select_criterion(args, criterion, embed_adv_imagenet,
embed_tar_imagenet)
total_loss_combined = loss + loss_eva + loss_imagenet # Combine the three losses
scaler.scale(total_loss_combined).backward()
scaler.step(optimizer)
scaler.update()
total_loss += total_loss_combined.item()
total_observer_clip += observer_clip.item()
total_observer_eva += observer_eva.item()
total_observer_imagenet += observer_imagenet.item()
global_step += 1
scheduler.step()
if batch_idx % 100 == 0 and rank == 0:
avg_loss = total_loss / global_step
avg_observer_clip = total_observer_clip / global_step
avg_observer_eva = total_observer_eva / global_step
avg_observer_imagenet = total_observer_imagenet / global_step
current_lr = optimizer.param_groups[0]['lr']
# Print losses and observers for each model
print(
f'Epoch {epoch}, Batch {batch_idx}, Loss: {avg_loss:.6f}, CLIP Similarity: {avg_observer_clip:.4f},'
f'EVA Similarity: {avg_observer_eva:.4f}, ImageNet Similarity: {avg_observer_imagenet:.4f}, lr: {current_lr}')
avg_loss = total_loss / global_step
if rank == 0:
print(f"Epoch: {epoch}, Training Loss: {avg_loss}")
torch.save({
'epoch': epoch,
'global_step': global_step,
'decoder_state_dict': decoder.module.state_dict(), # Saving DDP-wrapped model
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}, f"checkpoints/{args.dataset}_{args.criterion}_auxiliary.pt")
dist.destroy_process_group() # Clean up after training
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="datasets/mscoco")
parser.add_argument("--dataset", type=str, default="coco_retrieval")
parser.add_argument("--epoch", type=int, default=20)
parser.add_argument("--batch_size", type=int, default=800)
parser.add_argument("--eps", type=float, default=16 / 255)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--checkpoint", type=str, default='checkpoints/pre-trained.pt', help="path to checkpoint to load")
parser.add_argument("--criterion", type=str, default='BiContrastiveLoss')
parser.add_argument("--imagenet", type=str)
parser.add_argument("--cache_path", type=str, default='datasets')
args = parser.parse_args()
registry.mapping["paths"]["cache_root"] = args.cache_path
train(args)