-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrkl.jl
319 lines (298 loc) · 10.2 KB
/
rkl.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
using PPInterpolation
import AQFED.TermStructure:
TSBlackModel, varianceByLogmoneyness, discountFactor, logForward, forward
#Runge-Kutta-Legendre FDM for the American option.
function makeFDMPriceInterpolation(isCall, isEuropean, model, T, strike, N, M; method = "RKL2", sDisc = "Sinh", useExponentialFitting = false, smoothing = "Kreiss", lambdaS = 0.25, Xdev = 4, Smax = 0, rklStages = 0, epsilonRKL = 0, useSqrt = true)
upwindingThreshold = 1.0
v0 = varianceByLogmoneyness(model, 0.0, T)
Xspan = Xdev * sqrt(v0 * T)
lnfK = logForward(model, log(strike), T)
Xmin = lnfK - Xspan - 0.5 * v0 * T
Xmax = lnfK + Xspan - 0.5 * v0 * T
Smin = exp(Xmin)
if Smax == 0
Smax = exp(Xmax)
end
X = collect(range(Xmin, stop = Xmax, length = M))
hm = X[2] - X[1]
Sscale = strike * lambdaS
if sDisc == "Exp"
S = exp.(X)
J = exp.(X)
Jm = @. exp(X - hm / 2)
elseif sDisc == "Sinh"
u = collect(range(0.0, stop = 1.0, length = M))
Smin = 0.0
c1 = asinh((Smin - strike) / Sscale)
c2 = asinh((Smax - strike) / Sscale)
S = @. strike + Sscale * sinh((c2 - c1) * u + c1)
hm = u[2] - u[1]
J = @. Sscale * (c2 - c1) * cosh((c2 - c1) * u + c1)
Jm = @. Sscale * (c2 - c1) * cosh((c2 - c1) * (u - hm / 2) + c1)
else #if sDisc == "Linear"
S = collect(range(0.0, stop = Smax, length = M))
X = S
hm = X[2] - X[1]
J = ones(M)
Jm = ones(M)
end
Smin = S[1]
sign = 1
if !isCall
sign = -1
end
F0 = zeros(M)
if isCall
F0 = @. max(S - strike, 0.0)
else
F0 = @. max(strike - S, 0.0)
end
iStrike = searchsortedfirst(S, strike)
if smoothing == "Averaging"
if strike < (S[iStrike] + S[iStrike-1]) / 2
iStrike -= 1
end
a = (S[iStrike] + S[iStrike+1]) / 2
if !isCall
a = (S[iStrike] + S[iStrike-1]) / 2 # int a,lnK K-eX dX = K(a-lnK)+ea-K
end
value = (a - strike) * (a - strike) * 0.5
F0[iStrike] = value / (S[iStrike+1] - S[iStrike-1]) * 2
elseif smoothing == "Kreiss"
xmk = S[iStrike] - strike
h = (S[iStrike+1] - S[iStrike-1]) / 2
# F0smooth[iStrike] = 0.5*xmk + h/6 + 0.5*xmk*xmk/h*(1-xmk/(3*h))
F0[iStrike] = 0.5 * xmk + h / 6 + 0.5 * xmk * xmk / h * (1 - xmk / (3 * h))
if !isCall
F0[iStrike] -= xmk # C-P = f-K
end
iStrike -= 1
xmk = S[iStrike] - strike
h = (S[iStrike+1] - S[iStrike-1]) / 2
F0[iStrike] = 0.5 * xmk + h / 6 + 0.5 * xmk * xmk / h * (1 + xmk / (3 * h))
if !isCall
F0[iStrike] -= xmk # C-P = f-K
end
end
F = zeros(M)
F[1:M] = F0
lowerBoundA = zeros(M)
if !isEuropean
lowerBoundA .= F
end
ti = T
dt = ti / N
if useSqrt
ti = 0.0
dt = sqrt(T) / N
end
useDirichlet = false
lbValue = computeLowerBoundary(isCall, strike, useDirichlet, 0.0, Smin, useSqrt ? ti^2 : ti, model)
updatePayoffExplicitTrans(F, useDirichlet, lbValue, M)
A1ilj = zeros(M)
A1ij = zeros(M)
A1iuj = zeros(M)
if method == "RKL2"
makeSystem(model, A1ilj, A1ij, A1iuj, useExponentialFitting, upwindingThreshold, useSqrt ? T -(ti)^2 : ti, dt, S, J, Jm, hm, useDirichlet, M)
if useSqrt
tih = ti + dt / 2
@. A1ij *= 2tih
@. A1ilj *= 2tih
@. A1iuj *= 2tih
end
s, a, b, w0, w1 = initRKLCoeffs(dt, A1ij, epsilonRKL = epsilonRKL, rklStages = rklStages)
Y0 = zeros(M)
Y1 = zeros(M)
Y2 = zeros(M)
for n = 1:N
tih = useSqrt ? ti + dt / 2 : ti - dt / 2
lbValue = computeLowerBoundary(isCall, strike, useDirichlet, 0.0, Smin, useSqrt ? T - tih^2 : tih, model)
F .= RKLStep(s, a, b, w0, w1, A1ilj, A1ij, A1iuj, F, Y0, Y1, Y2, useDirichlet, lbValue, lowerBoundA, M)
if useSqrt
ti += dt
# println(ti^2, " ", dt)
else
ti -= dt
end
if n < N
makeSystem(model, A1ilj, A1ij, A1iuj, useExponentialFitting, upwindingThreshold, useSqrt ? T - ti^2 : ti, dt, S, J, Jm, hm, useDirichlet, M)
if useSqrt
tih = ti + dt / 2
@. A1ij *= 2tih
@. A1ilj *= 2tih
@. A1iuj *= 2tih
s, a, b, w0, w1 = initRKLCoeffs(dt, A1ij, epsilonRKL = epsilonRKL, rklStages = rklStages)
end
end
end
end
spl = makeCubicPP(S, F, PPInterpolation.SECOND_DERIVATIVE, 0.0, PPInterpolation.SECOND_DERIVATIVE, 0.0, PPInterpolation.VanLeer())
return spl
end
function initRKLCoeffs(dt, A1ij; epsilonRKL = 0.0, rklStages = 0)
dtexplicit = dt / max(maximum(A1ij))
dtexplicit /= 2 #lambdaS
s = 0.0
delta = 1 + 4 * (2 + 4 * dt / dtexplicit)
s = ceil(Int, (-1 + sqrt(delta)) / 2)
if s % 2 == 0
s += 1
end
if epsilonRKL > 0
s = computeRKLStages(dtexplicit, dt, epsilonRKL)
end
if rklStages > 0
s = rklStages
end
println("s=",s, " dt=",dt)
a = zeros(s)
b = zeros(s)
w0 = 1.0
w1 = 0.0
if epsilonRKL == 0
w1 = 4 / (s^2 + s - 2)
b[1] = 1.0 / 3
b[2] = 1.0 / 3
a[1] = 1.0 - b[1]
a[2] = 1.0 - b[2]
for i = 3:s
b[i] = (i^2 + i - 2.0) / (2 * i * (i + 1.0))
a[i] = 1.0 - b[i]
end
else
w0 = 1 + epsilonRKL / s^2
_, tw0p, tw0p2 = legPoly(s, w0)
w1 = tw0p / tw0p2
b = zeros(s)
for jj = 2:s
_, tw0p, tw0p2 = legPoly(jj, w0)
b[jj] = tw0p2 / tw0p^2
end
b[1] = b[2]
a = zeros(s)
for jj = 2:s
tw0, _, _ = legPoly(jj - 1, w0)
a[jj-1] = (1 - b[jj-1] * tw0)
end
end
return s, a, b, w0, w1
end
function makeSystem(model, A1ilj::AbstractArray{T}, A1ij::AbstractArray{T}, A1iuj::AbstractArray{T}, useExponentialFitting::Bool, upwindingThreshold::Real, ti::Real, dt::Real, S::Vector{T}, J::Vector{T}, Jm::Vector{T}, hm::Real, useDirichlet::Bool, M::Int) where {T}
drift_ti = logForward(model, 0.0, ti) - logForward(model, 0.0, ti-dt)
r_ti = -logDiscountFactor(model, ti) + logDiscountFactor(model, ti-dt)
if useDirichlet
A1ij[1] = 0
else
drifti = drift_ti * S[1]
A1iuj[1] = - drifti / (Jm[2] * hm)
A1ij[1] = r_ti / 2 - A1iuj[1]
end
drifti = drift_ti* S[M]
A1ilj[M] = drifti / (Jm[M] * hm)
A1ij[M] = r_ti / 2 - A1ilj[M]
@inbounds @simd for i = 2:M-1
svi = S[i]^2 * varianceByLogmoneyness(model,0.0,ti) / J[i] * dt
drifti = drift_ti * S[i]
if useExponentialFitting
if abs(drifti * hm / svi) > upwindingThreshold
svi = drifti * hm / tanh(drifti * hm / svi)
end
end
svi /= hm^2
drifti /= (2 * J[i] * hm)
A1iuj[i] = - (svi / (2Jm[i+1]) + drifti)
A1ij[i] = - (-svi / 2 * (1 / Jm[i+1] + 1 / Jm[i]) - r_ti)
A1ilj[i] = - (svi / (2Jm[i]) - drifti)
end
end
function explicitStep(a::Real, A1ilj::Vector{T}, A1ij::Vector{T}, A1iuj::Vector{T}, F::Vector{T}, Y0::Vector{T}, Y1::Vector{T}, M::Int) where {T}
index = 1
Y1[index] = Y0[index] - a * (A1ij[index] * F[index] + A1iuj[index] * F[index+1])
index = M
Y1[index] = Y0[index] - a * (A1ij[index] * F[index] + A1ilj[index] * F[index-1])
@inbounds @simd for index = 2:M-1
Y1[index] = Y0[index] - a * (A1ij[index] * F[index] + A1iuj[index] * F[index+1] + A1ilj[index] * F[index-1])
end
end
function RKLStep(s::Int, a::Vector{T}, b::Vector{T}, w0::Real, w1::Real, A1ilj::Vector{T}, A1ij::Vector{T}, A1iuj::Vector{T}, F::Vector{T}, Yjm2::Vector{T}, Yjm::Vector{T}, Yj::Vector{T}, useDirichlet::Bool, lbValue::Real, lowerBound::Vector{T}, M::Int) where {T}
mu1b = b[1] * w1
explicitStep(mu1b, A1ilj, A1ij, A1iuj, F, F, Yjm, M)
updatePayoffExplicitTrans(Yjm, useDirichlet, lbValue, M)
MY0 = (Yjm - F) / mu1b
enforceLowerBound(Yjm, lowerBound, M)
Yjm2 .= F
for j = 2:s
muu = (2 * j - 1) * b[j] / (j * b[j-1])
muj = muu * w0
mujb = muu * w1
gammajb = -a[j-1] * mujb
nuj = -1.0 * b[2] / (2.0 * b[1]) #b0 = b[1]
if j > 2
nuj = -(j - 1) * b[j] / (j * b[j-2])
end
@. Yj = muj * Yjm + nuj * Yjm2 + (1 - nuj - muj) * F + gammajb * MY0 # + mujb*MYjm
explicitStep(mujb, A1ilj, A1ij, A1iuj, Yjm, Yj, Yj, M)
updatePayoffExplicitTrans(Yj, useDirichlet, lbValue, M)
enforceLowerBound(Yj, lowerBound, M)
Yjm2, Yjm = Yjm, Yjm2
Yjm, Yj = Yj, Yjm
end
return Yjm
end
function enforceLowerBound(F::Vector{T}, lowerBound::Vector{T}, M::Int) where {T}
if length(lowerBound) > 0
@. F = max(F, lowerBound)
end
end
function computeLowerBoundary(isCall::Bool, strike::Real, useDirichlet::Bool, B::Real, Smin::Real, ti::Real, model)
lbValue = 0.0
if useDirichlet && B == 0
if !isCall
lbValue = (strike - forward(model, Smin, ti) * discountFactor(model, ti))
end
end
return lbValue
end
function updatePayoffExplicitTrans(F::Vector{T}, useDirichlet::Bool, lbValue::Real, M::Int) where {T}
if useDirichlet
F[1] = lbValue
end
end
function computeRKLStages(dtexplicit, dt, ep)
s = 1
betaFunc = function (s::Int)
w0 = 1 + ep / s^2
_, tw0p, tw0p2 = legPoly(s, w0)
beta = (w0 + 1) * tw0p2 / tw0p
return beta - 2 * dt / (dtexplicit)
end
while s < 10000 && betaFunc(s) < 0
s += 1
end
#s += Int(ceil(s/10))
return s
end
function legPoly(s::Int, w0::Real)
tjm = 1.0
tj = w0
if s == 1
return tj, 1.0, 0.0
end
dtjm = 0.0
dtj = 1.0
d2tjm = 0.0
d2tj = 0.0
for j = 2:s
onej = 1.0 / j
tjp = (2 - onej) * w0 * tj - (1 - onej) * tjm
dtjp = (2 - onej) * (tj + w0 * dtj) - (1 - onej) * dtjm
d2tjp = (2 - onej) * (dtj * 2 + w0 * d2tj) - (1 - onej) * d2tjm
tjm = tj
dtjm = dtj
d2tjm = d2tj
tj = tjp
dtj = dtjp
d2tj = d2tjp
end
return tj, dtj, d2tj
end