-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathandersenlakepp.jl
474 lines (454 loc) · 19.3 KB
/
andersenlakepp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
using AQFED.TermStructure
import AQFED.Math: normcdf, normpdf, lambertW
import AQFED.Black: blackScholesFormula
import AQFED.Math: norminv
import Roots: find_zero, Newton, A42
using ForwardDiff
export AndersenLakePPRepresentation, priceAmerican
#@inline normcdf(z::Float64) = normcdfCody(z) #Faster apparently
struct AndersenLakePPRepresentation{TM}
isCall::Bool
model::TM
dividends::Vector{Dividend{Float64}}
tauMax::Float64
tauHat::Float64
nPP::Int
taus::Vector{Float64}
nC::Int
nTS1::Int
nTS2::Int
capX::Float64
avec::Matrix{Float64}
qvec::Matrix{Float64}
wvec::Vector{Float64}
yvec::Vector{Float64}
end
function AndersenLakePPRepresentation(
model::TSBlackModel,
tauMax::Float64,
isCall::Bool=false;
atol::Float64=1e-8,
nPP::Int=1,
nC::Int=5,
nIter::Int=8,
nTS1::Int=21,
nTS2::Int=121,
isLower::Bool=false,
dividends::AbstractArray{Dividend{Float64}}=Dividend{Float64}[]
)
if iseven(nTS1)
throw(DomainError(string("nTS1 must be odd but was ", nTS1)))
end
if iseven(nTS2)
throw(DomainError(string("nTS2 must be odd but was ", nTS2)))
end
K = 1.0
if isempty(dividends)
taus = Vector{Float64}()
for i = 1:nPP
append!(taus, tauMax * (i - 1) / (nPP))
end
else
taus = [dividend.exDate for dividend in dividends]
if nPP < length(dividends)
prepend!(taus, 0.0)
nPP = length(taus)
else
for i = 1:nPP
append!(taus, tauMax * (i - 1) / (nPP))
end
nPP = length(taus)
end
sort!(taus)
end
avec = zeros(Float64, (nC + 1, nPP))
qvec = zeros(Float64, (nC + 1, nPP))
wvec = zeros(nTS1)
yvec = zeros(nTS1)
ndiv2 = trunc(Int, (nTS1 + 1) / 2)
hn = tanhsinhStep(nTS1)
hvec = hn .* (ndiv2-1:-1:1)
svec = @. sinh(hvec) * pi / 2
@. @view(yvec[1:ndiv2-1]) = tanh(svec) #may be more precise to store y+1 directly instead
@. @view(wvec[1:ndiv2-1]) = hn * pi * cosh(hvec) / (2 * (cosh(svec))^2)
for i = 1:ndiv2-1
yvec[nTS1+1-i] = -yvec[i]
wvec[nTS1+1-i] = wvec[i]
end
yvec[ndiv2] = 0
wvec[ndiv2] = pi * hn / 2
if isCall #use McDonald and Schroder symmetry
model = AQFED.TermStructure.TSBlackModel(model.surface, SpreadCurve(model.discountCurve, model.driftCurve), model.discountCurve)
end
rShort = -(logDiscountFactor(model, tauMax + 1e-7) - logDiscountFactor(model, tauMax)) / 1e-7
qShort = rShort - (logForward(model, 0.0, tauMax + 1e-7) - logForward(model, 0.0, tauMax)) / 1e-7
vol = sqrt(varianceByLogmoneyness(model, 0.0, tauMax))
capX = isLower ? K * rShort / qShort : K
if qShort > rShort
capX = K * rShort / qShort
end
logCapX = log(capX)
tauHat = tauMax
# if r < 0 && q < r && vol >= sqrt(-2 * q) - sqrt(-2 * r)
# #double boundary which intersect before infinite time
# objHat = function (τ)
# t = τ
# value = abs(norminv(-expm1(q * t)) - norminv(-expm1(r * t))) / sqrt(t) - vol
# # println(τ, " v ", value)
# return value
# end
# if objHat(tauMax) < 0 #
# # derHat = x -> ForwardDiff.derivative(objHat,float(x))
# # tauHat = (find_zero((objHat,derHat), sqrt(tauMax), Newton()))^2
# tauHat = find_zero(objHat, (1e-7, tauMax), A42())
# # println("tauHat ", tauHat)
# tauHat = min(tauHat, tauMax)
# end
# end
local fprev = capX
append!(taus, tauHat)
r = -logDiscountFactor(model, tauHat) / tauHat
q = r - logForward(model, 0.0, tauHat) / tauHat
modelB = ConstantBlackModel(vol, r, q)
#println("taus ",taus)
isDiscontinuous = !isempty(dividends)
for iPP = nPP:-1:1
if iPP == nPP
qvec[nC+1, iPP] = isDiscontinuous ? 1.0 : 0.0
else
qvec[nC+1, iPP] = qvec[1, iPP+1]
end
for i = nC:-1:1
zi = cos((i - 1) * pi / nC)
taui = tauHat - taus[iPP+1] + (taus[iPP+1] - taus[iPP]) / 4 * (1 + zi)^2
fi = americanBoundaryPutQDP(isLower, modelB, fprev, K, taui, atol)
fprev = fi
logfX = isDiscontinuous ? fi / capX : log(fi / capX)
qvec[i, iPP] = logfX # max(abs(qvec[i+1]), abs(logfX))*sign(logfX) # don't square as it might be neg and pos
end
end
# println("init-qvec ", qvec')
d2Vector = zeros(nTS1)
d1Vector = zeros(nTS1)
k1 = zeros(nTS1)
k2 = zeros(nTS1)
tauVector = zeros(nTS1)
qVector = zeros(nTS1)
rVector = zeros(nTS1)
#TODO cache variance, logforward,forward,df per time.
#beyong nC=5 ot 7, may worth to use many "avec" PP. nPP = 1,...,10. to avoid oscillations. 10 times slower, much faster than nC=70 (which actually does not make much sense)
if nIter == 0
for iPP = nPP:-1:1
updateAvec!(@view(avec[:, iPP]), nC, @view(qvec[:, iPP]))
end
end
ϵ = 0.0
if isDiscontinuous
ϵ = 1e-7
end
Bmin = 1e-16
for j = 1:nIter
for iPP = nPP:-1:1
isOnExDate = false
for dividend in dividends
# println("dividend ",dividend.exDate," ",taus[iPP+1])
if dividend.exDate == taus[iPP+1]
isOnExDate = true
break
end
end
if iPP < nPP
if isOnExDate
# println(j, "adjusting ",iPP)
qvec[nC+1, iPP] = Bmin
else
qvec[nC+1, iPP] = qvec[1, iPP+1]
end
end
end
# if isDiscontinuous
# for iPP = nPP-1:-1:1
# qvec[nC+1, iPP] = Bmin
# end
# else
# for iPP = nPP-1:-1:1
# qvec[nC+1, iPP] = qvec[1, iPP+1]
# end
# end
for iPP = nPP:-1:1
updateAvec!(@view(avec[:, iPP]), nC, @view(qvec[:, iPP]))
end
# println("avec", avec, " q ",qvec)
qvec[nC+1, nPP] = isDiscontinuous ? 1.0 : 0.0
for iPP = nPP:-1:1
iMax = nC
if iPP < nPP
iMax = nC
end
for i = iMax:-1:1
zi = cos((i - 1) * pi / nC)
taui = tauHat - taus[iPP+1] + ϵ + (taus[iPP+1] - taus[iPP] - 2ϵ) / 4 * (1 + zi)^2 #taui = tau
Kstari = K / forward(model, 1.0, tauHat) * forward(model, 1.0, tauHat - taui) #P(T-tau,T)/Q(T-tau,T)
lnBtaui = logCapX + (isDiscontinuous ? log(qvec[i, iPP]) : qvec[i, iPP])
sum1k = 0.0
sum2k = 0.0
for iPPk = nPP:-1:iPP
taukEnd = taui
if iPPk == iPP
@. tauVector = (taui - (tauHat - taus[iPP+1] - 2ϵ)) / 4 * (1 + yvec)^2
else
taukEnd = tauHat - taus[iPPk] - ϵ
@. tauVector = (taus[iPPk+1] - taus[iPPk] - 2ϵ) / 4 * (1 + yvec)^2
end
@inbounds for sk1 = 1:nTS1
tauk = tauHat - taus[iPPk+1] + ϵ + tauVector[sk1] #tau-u
taukCompl = taus[iPPk+1] + 2ϵ - taukEnd + tauk
zck = 2 * sqrt(max((taukEnd - tauk) / (taus[iPPk+1] - taus[iPPk]), 0.0)) - 1.0
#iPPk = index of tauk in taus
qck = chebQck(@view(avec[:, iPPk]), zck)
lnBtauk = logCapX + (isDiscontinuous ? log(max(qck, Bmin)) : qck)
# println("nIter ",j," iPPk ",iPPk," iPP ",iPP," ",sk1," tauk ",tauk, " taui ",taui, " ",taukCompl," zk^2+1=",(taukEnd - tauk) / (taus[iPPk+1] - taus[iPPk])," lnB ",lnBtauk, " ",lnBtaui)
#from tauHat-taui to (tauHat-taui)+tauk
sqrtv = sqrt(max(varianceByLogmoneyness(model, 0.0, taukCompl) * (taukCompl) - varianceByLogmoneyness(model, 0.0, tauHat - taui) * (tauHat - taui), 0.0))
if sqrtv == 0.0
qVector[sk1] = 0.0
rVector[sk1] = 0.0
d1Vector[sk1] = 0.0
d2Vector[sk1] = 0.0
else
frac = forward(model, 1.0, taukCompl) / forward(model, 1.0, tauHat - taui)
rFrac = discountFactor(model, taukCompl) / discountFactor(model, tauHat)
rRate = -(log(discountFactor(model, taukCompl + 1e-7)) - log(discountFactor(model, taukCompl))) / (1e-7) #log(discountFactor(model, (tauHat - taui) + tauk)) / ((tauHat - taui) + tauk)
qRate = rRate-(log(forward(model, 1.0, taukCompl + 1e-7))-log(forward(model, 1.0, taukCompl))) / 1e-7
# objrRate = function(x)
# -log(discountFactor(model, x))
# end
# rRate = ForwardDiff.derivative( objrRate, (tauHat - taui) + tauk)
gk = dividendGrowthFactor(dividends, tauHat - taui, taukCompl)
qVector[sk1] = forward(model, 1.0, taukCompl) / forward(model, 1.0, tauHat) * rFrac * qRate * gk
rVector[sk1] = rFrac * rRate ###FIXME strange that rvector does not follow frac, likely bc of Kstar factors but still
# if (isnan(rVector[sk1]))
# println("AL ",rFrac, " ",tauHat, " ",taukCompl, " ",tauk, " ",rRate," ",qRate)
# end
# println("sqrtv", sqrtv, " ", lnBtaui, " ", qck, " ", log(frac))
d1Vector[sk1] =
((lnBtaui - lnBtauk) + log(frac * gk)) / sqrtv + sqrtv / 2
d2Vector[sk1] = d1Vector[sk1] - sqrtv
end
end
# println(j, " ",iPP, " ", iPPk," ",d2Vector)
@. k1 = wvec * qVector * (yvec + 1) * normcdf(d1Vector)
@. k2 = wvec * rVector * (yvec + 1) * normcdf(d2Vector)
sum1k += (taukEnd - (tauHat - taus[iPPk+1])) * sum(k1) / 2
sum2k += (taukEnd - (tauHat - taus[iPPk+1])) * sum(k2) / 2
end
#from tauhait-taui to tauhat
sqrtv = sqrt(max(-varianceByLogmoneyness(model, 0.0, tauHat - taui) * (tauHat - taui) + varianceByLogmoneyness(model, 0.0, tauHat) * tauHat, 0.0))
d1i = ((lnBtaui - log(K)) + logForward(model, 0.0, tauHat) - logForward(model, 0.0, tauHat - taui)) / sqrtv + sqrtv / 2
gi = dividendGrowthFactor(dividends, tauHat - taui, tauHat)
sumgi = 0.0
previousG = 1.0
previousDate = tauHat - taui
for dividend in dividends
if dividend.exDate > previousDate
currentG = dividendGrowthFactor(dividends, previousDate, dividend.exDate)
sumgi += (currentG - previousG) * forward(model, 1.0, dividend.exDate) / forward(model, 1.0, previousDate) / discountFactor(model, previousDate) * discountFactor(model, dividend.exDate)
previousG = currentG
end
end
d1i += log(gi)
d2i = d1i - sqrtv
# println("iPP ",iPP, " taui ", taui, " B ", lnBtaui, " drift ", logForward(model, 0.0, tauHat) - logForward(model, 0.0, tauHat - taui))
# println("iPP ", iPP, " taui ", taui, " ", logSum)
Ni = sum2k
Di = sum1k
if isLower
Ni = discountFactor(model, tauHat - taui) / discountFactor(model, tauHat) - 1 - Ni
Di = forward(model, 1.0, tauHat) * discountFactor(model, tauHat) / (forward(model, 1.0, tauHat - taui) * discountFactor(model, tauHat - taui)) - 1 - Di
else
Ni += normcdf(d2i)
Di += normcdf(d1i) * gi - sumgi
end
NiOverDi = Ni / Di
# println("AL ", Kstari, " ", Ni, " ", Di, " ", rVector)
if Di == 0.0 && Ni == 0.0
#use asymptotic expansion cdf = erfc(-x/sqrt2)/2 and erfc(x) = e^{-x^2}/(x*sqrtpi)*(1-1/(2*x^2))
NiOverDi = exp(-(d2i^2 - d1i^2) / 2) * (d1i / d2i)
end
fi = Kstari * NiOverDi
if fi <= 0
# B = Kstar * N/D to B = B + Kstar*N - B*D
#lnBtaui = isLower ? logCapX + sqrt(qvec[i]) : logCapX - sqrt(qvec[i])
Btaui = exp(lnBtaui)
fi = Btaui + Kstari * Ni - Btaui * Di
end
lfc = isDiscontinuous ? fi / capX : log(fi / capX)
if isnan(lfc)
throw(DomainError(
fi,
string("Nan qvec ", capX, " ", lnBtaui, " ", qvec[i, iPP], " at iPP=", iPP, " ", i),
))
end
qvec[i, iPP] = lfc
#qvec[i] = max(qvec[i+1], qvec[i])
#if !isLower && r < 0 && q < r
# qvec[i] = min(qvec[i], (log(K * (r / q) / capX))) # commented out with TS as we don't know for sure
#end
end
end
end
if nTS2 != nTS1
wvec = zeros(nTS2)
yvec = zeros(nTS2)
ndiv2 = trunc(Int, (nTS2 + 1) / 2)
hn = tanhsinhStep(nTS2)
hi = (ndiv2 - 1) * hn
for i = 1:ndiv2-1
p2s = pi * sinh(hi) / 2
yvec[i] = tanh(p2s)
p2c = pi * cosh(hi) / 2
cp2s = cosh(p2s)
wvec[i] = hn * p2c / (cp2s^2)
hi = hi - hn
end
yvec[ndiv2] = 0
wvec[ndiv2] = pi * hn / 2
for i = 1:ndiv2-1
yvec[nTS2+1-i] = -yvec[i]
wvec[nTS2+1-i] = wvec[i]
end
end
return AndersenLakePPRepresentation(
isCall,
model, dividends,
tauMax,
tauHat,
nPP, taus,
nC,
nTS1,
nTS2,
capX,
avec,
qvec,
wvec,
yvec,
)
end
function dividendGrowthFactor(dividends, t, u) #t excluded, u included
factor = 1.0
for dividend in dividends
if dividend.exDate > t + eps(Float64) && dividend.exDate <= u + eps(Float64)
factor *= (1 - dividend.amount)
end
end
return factor
end
function exerciseBoundary(p::AndersenLakePPRepresentation{TSBlackModel{TS,TC1,TC2}}, K::Float64, t::AbstractArray{Float64}) where {TS,TC1,TC2}
tauMax, nTS2 = p.tauMax, p.nTS2
wvec, yvec, avec = p.wvec, p.yvec, p.avec
nC = p.nC
Bzk = zeros(Float64, length(t))
iPP = 1
for i = eachindex(t)
if p.taus[iPP+1] < t[i]
iPP += 1
end
zck = 2 * sqrt(-(t[i] - p.taus[iPP+1]) / (p.taus[iPP+1] - p.taus[iPP])) - 1
qck = chebQck(@view(avec[:, iPP]), zck)
Bzk[i] = isempty(p.dividends) ? p.capX * K * exp(qck) : p.capX * K * qck
end
return Bzk
end
function boundaryTimes(p::AndersenLakePPRepresentation{TSBlackModel{TS,TC1,TC2}}) where {TS,TC1,TC2}
t = Vector{Float64}()
for iPP=1:p.nPP
for i=1:p.nC
zi = cos((i - 1) * pi / p.nC)
taui = p.tauHat - p.taus[iPP+1] +(p.taus[iPP+1] - p.taus[iPP] ) / 4 * (1 + zi)^2 #taui = tau
append!(t,p.tauHat-taui)
end
end
return t
end
function priceAmerican(p::AndersenLakePPRepresentation{TSBlackModel{TS,TC1,TC2}}, K::Float64, S::Float64)::Float64 where {TS,TC1,TC2}
if p.isCall #use McDonald and Schroder symmetry
K, S = S, K
end
capX = p.capX * K
f0 = isempty(p.dividends) ? exp(p.qvec[1]) * capX : p.capX * K * max(p.qvec[1], 1e-16)
if S < f0
return max(K - S, 0.0)
end
tauMax, nTS2 = p.tauMax, p.nTS2
wvec, yvec, avec = p.wvec, p.yvec, p.avec
nC = p.nC
dividends = p.dividends
sum4k = 0.0
for iPP = 1:p.nPP
uMax = p.taus[iPP+1]
uMin = p.taus[iPP]
uScale = (uMax - uMin) / 2
uShift = (uMax + uMin) / 2
for sk2 = 1:nTS2
wk = wvec[sk2]
yk = yvec[sk2]
uk = uScale * yk + uShift
zck = 2 * sqrt(max((uk - p.taus[iPP]) / (p.taus[iPP+1] - p.taus[iPP]), 0)) - 1
qck = chebQck(@view(avec[:, iPP]), zck)
Bzk = isempty(p.dividends) ? p.capX * K * exp(qck) : p.capX * K * max(qck, 1e-16)
tauk = p.taus[iPP+1] - uk + p.taus[iPP] #T-u
# println("u ", uk, " ", zck, " t ", tauk, " ", Bzk)
if tauk != 0
vol = sqrt(varianceByLogmoneyness(p.model, 0.0, tauk))
fg = forward(p.model, S, tauk) * dividendGrowthFactor(dividends, 0.0, tauk)
d1k, d2k = vaGBMd1d2(fg, Bzk, 0.0, 0.0, tauk, vol)
rRate = -(log(discountFactor(p.model, tauk + 1e-6)) - log(discountFactor(p.model, tauk))) / 1e-6
qRate = rRate - (log(forward(p.model, 1.0, tauk + 1e-6)) - log(forward(p.model, 1.0, tauk))) / 1e-6
sum4k += uScale * wk * K * rRate * discountFactor(p.model, tauk) * normcdf(-d2k)
sum4k += -uScale * wk * qRate * fg * discountFactor(p.model, tauk) * normcdf(-d1k)
end
end
# for sk2 = 1:nTS2
# wk = wvec[sk2]
# yk = yvec[sk2]
# uk = uScale * yk + uShift
# zck = 2 * sqrt(max((uk - p.taus[iPP]) / (p.taus[iPP+1] - p.taus[iPP]), 0)) - 1
# qck = chebQck(@view(avec[:, iPP]), zck)
# Bzk = isempty(p.dividends) ? p.capX * K * exp(qck) : p.capX * K * max(qck, 1e-16)
# tauk = p.taus[iPP+1] - uk + p.taus[iPP] #T-u
# # println("u ", uk, " ", zck, " t ", tauk, " ", Bzk)
# if tauk != 0
# vol = sqrt(varianceByLogmoneyness(p.model, 0.0, tauk))
# fg = forward(p.model, S, tauk) * dividendGrowthFactor(dividends, 0.0, tauk)
# d1k, d2k = vaGBMd1d2( Bzk,fg, 0.0, 0.0, tauk, vol)
# rRate = -(log(discountFactor(p.model, tauk + 1e-6)) - log(discountFactor(p.model, tauk))) / 1e-6
# qRate = rRate - (log(forward(p.model, 1.0, tauk + 1e-6)) - log(forward(p.model, 1.0, tauk))) / 1e-6
# sum4k += uScale * wk * K * rRate * discountFactor(p.model, tauk) * normcdf(d1k)
# sum4k += -uScale * wk * qRate * fg * discountFactor(p.model, tauk) * normcdf(d2k)
# end
# end
end
# sumgi = 0.0
# previousG = 1.0
# previousDate = 0.0
# for dividend in dividends
# if dividend.exDate < tauMax
# currentG = dividendGrowthFactor(dividends, 0.0, dividend.exDate)
# sumgi += (currentG - previousG)*forward(p.model,1.0,dividend.exDate)/forward(p.model,1.0,previousDate) /discountFactor(p.model,previousDate)*discountFactor(p.model, dividend.exDate)
# previousG = currentG
# end
# end
# println("sumgi ",sumgi)
euro = blackScholesFormula(
false,
K,
forward(p.model, S, tauMax) * dividendGrowthFactor(dividends, 0.0, tauMax),
varianceByLogmoneyness(p.model, 0.0, tauMax) * tauMax,
1.0,
discountFactor(p.model, tauMax)
)
# println("euro ", euro, " ", sum4k)
price = euro + sum4k
price = max(K - S, price)
return price
end