-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_esp32.py
365 lines (301 loc) · 11.6 KB
/
main_esp32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from machine import I2C,Pin
import utime
import ujson
from math import sqrt, pi, degrees, radians, atan2, asin, sin, cos
EARTH_GRAVITY_MS2 = 9.80665 # m/s2
from umqtt.simple import MQTTClient
import machine,utime,time,network
class SMBus(I2C):
""" Provides an 'SMBus' module which supports some of the py-smbus
i2c methods, as well as being a subclass of machine.I2C
Hopefully this will allow you to run code that was targeted at
py-smbus unmodified on micropython.
Use it like you would the machine.I2C class:
import usmbus.SMBus
bus = SMBus(1, pins=('G15','G10'), baudrate=100000)
bus.read_byte_data(addr, register)
... etc
"""
def read_byte_data(self, addr, register):
""" Read a single byte from register of device at addr
Returns a single byte """
return self.readfrom_mem(addr, register, 1)[0]
def read_i2c_block_data(self, addr, register, length):
""" Read a block of length from register of device at addr
Returns a bytes object filled with whatever was read """
return self.readfrom_mem(addr, register, length)
def write_byte_data(self, addr, register, data):
""" Write a single byte from buffer `data` to register of device at addr
Returns None """
# writeto_mem() expects something it can treat as a buffer
if isinstance(data, int):
data = bytes([data])
return self.writeto_mem(addr, register, data)
def write_i2c_block_data(self, addr, register, data):
""" Write multiple bytes of data to register of device at addr
Returns None """
# writeto_mem() expects something it can treat as a buffer
if isinstance(data, int):
data = bytes([data])
return self.writeto_mem(addr, register, data)
bus = SMBus(1,scl=Pin(22), sda=Pin(21), freq=100000)
class IMU(object):
def write_byte(self, adr, value):
bus.write_byte_data(self.ADDRESS, adr, value)
def read_byte(self, adr):
return bus.read_byte_data(self.ADDRESS, adr)
def read_word(self, adr, rf=1):
# rf = 1 Little Endian Format, rf = 0 Big Endian Format
if rf == 1:
low = self.read_byte(adr)
high = self.read_byte(adr+1)
else:
high = self.read_byte(adr)
low = self.read_byte(adr+1)
val = (high << 8) + low
return val
def read_word_2c(self, adr, rf=1):
val = self.read_word(adr, rf)
if(val & (1 << 16 - 1)):
return val - (1<<16)
else:
return val
#G-sensor
ADXL345_ADDRESS = 0x53 # I2C address
ADXL345_BW_RATE = 0x2C # data rate and power mode control
ADXL345_POWER_CTL = 0x2D # power-saving features control
ADXL345_DATA_FORMAT = 0x31 # data format control
ADXL345_DATAX0 = 0x32
ADXL345_DATAY0 = 0x34
ADXL345_DATAZ0 = 0x36
ADXL345_BW_RATE_100HZ = 0x0A # 0A = 0000 1111
ADXL345_MEASURE = 0x08 # 08 = 0000 1000
ADXL345_SCALE_MULTIPLIER = 0.00390625 # G/LSP. 1/256 = 0.00390625
class ADXL345(IMU):
ADDRESS = ADXL345_ADDRESS
def __init__(self, X_OFFSET, Y_OFFSET, Z_OFFSET) :
# class properties
self.Xoffset = X_OFFSET # unit: G
self.Yoffset = Y_OFFSET # unit: G
self.Zoffset = Z_OFFSET # unit: G
self.Xraw = 0.0
self.Yraw = 0.0
self.Zraw = 0.0
self.Xg = 0.0
self.Yg = 0.0
self.Zg = 0.0
self.X = 0.0
self.Y = 0.0
self.Z = 0.0
self.df_value = 0b00001000 # Self test disabled, 4-wire interface, Full resolution, Range = +/-2g
self.Xcalibr = ADXL345_SCALE_MULTIPLIER
self.Ycalibr = ADXL345_SCALE_MULTIPLIER
self.Zcalibr = ADXL345_SCALE_MULTIPLIER
# Register 0x2C: BW_RATE
self.write_byte(ADXL345_BW_RATE, ADXL345_BW_RATE_100HZ)
# write value= 0x0A = 00001111
# D3-D0: The default value is 0x0A,
# which translates to a 100 Hz output data rate.
# Register 0x2D: POWER_CTL
self.write_byte(ADXL345_POWER_CTL, ADXL345_MEASURE)
# write value: 0x08 = 00001000
# D3=1: set 1 for measurement mode.
# Register 0x31: DATA_FORMAT
self.write_byte(ADXL345_DATA_FORMAT, self.df_value)
# write value=00001000
# D3 = 1: the device is in full resolution mode,
# where the output resolution increases with the g range
# set by the range bits to maintain a 4 mg/LSB scale factor.
# D1 D0 = range. 00 = +-2g
# RAW readings in LPS
def getRawX(self) :
self.Xraw = self.read_word_2c(ADXL345_DATAX0)
return self.Xraw
def getRawY(self) :
self.Yraw = self.read_word_2c(ADXL345_DATAY0)
return self.Yraw
def getRawZ(self) :
self.Zraw = self.read_word_2c(ADXL345_DATAZ0)
return self.Zraw
# G related readings in g
# similar to filter, combine current value with previous one
# plf = 1 means it only uses "current reading"
def getXg(self, plf=1.0) :
self.Xg = (self.getRawX() * self.Xcalibr + self.Xoffset) * plf + (1.0 - plf) * self.Xg
return self.Xg
def getYg(self, plf=1.0) :
self.Yg = (self.getRawY() * self.Ycalibr + self.Yoffset) * plf + (1.0 - plf) * self.Yg
return self.Yg
def getZg(self, plf=1.0) :
self.Zg = (self.getRawZ() * self.Zcalibr + self.Zoffset) * plf + (1.0 - plf) * self.Zg
return self.Zg
# unit: m/s2
def getX(self, plf=1.0) :
self.X = self.getXg(plf) * EARTH_GRAVITY_MS2
return self.X
def getY(self, plf=1.0) :
self.Y = self.getYg(plf) * EARTH_GRAVITY_MS2
return self.Y
def getZ(self, plf=1.0) :
self.Z = self.getZg(plf) * EARTH_GRAVITY_MS2
return self.Z
def getPitch(self) :
aX = self.getXg()
aY = self.getYg()
aZ = self.getZg()
self.pitch = degrees(atan2(-aX, sqrt(aY * aY + aZ * aZ)))
return self.pitch
def getRoll(self) :
aX = self.getXg()
aY = self.getYg()
aZ = self.getZg()
self.roll = degrees(atan2(-aY, sqrt(aX * aX + aZ * aZ)))
return self.roll
#Gyro
L3G4200D_ADDRESS = 0x69
L3G4200D_CTRL_REG1 = 0x20
L3G4200D_CTRL_REG4 = 0x23
L3G4200D_OUT_X_L = 0x28
L3G4200D_OUT_Y_L = 0x2A
L3G4200D_OUT_Z_L = 0x2C
class L3G4200D(IMU):
ADDRESS = L3G4200D_ADDRESS
def __init__(self) :
# class properties
self.Xraw = 0.0
self.Yraw = 0.0
self.Zraw = 0.0
self.X = 0.0
self.Y = 0.0
self.Z = 0.0
self.Xangle = 0.0
self.Yangle = 0.0
self.Zangle = 0.0
self.t0x = None
self.t0y = None
self.t0z = None
self.gain_std = 0.00875 # dps/digit
self.write_byte(L3G4200D_CTRL_REG1, 0x0F) # Normal mode, X, Y, Z-Axis enabled 0xB0
self.write_byte(L3G4200D_CTRL_REG4, 0x80)
self.setCalibration()
def setCalibration(self) :
gyr_r = self.read_byte(L3G4200D_CTRL_REG4)
self.gain = 2 ** (gyr_r & 48 >> 4) * self.gain_std
def getRawX(self):
self.Xraw = self.read_word_2c(L3G4200D_OUT_X_L)
return self.Xraw
def getRawY(self):
self.Yraw = self.read_word_2c(L3G4200D_OUT_Y_L)
return self.Yraw
def getRawZ(self):
self.Zraw = self.read_word_2c(L3G4200D_OUT_Z_L)
return self.Zraw
# unit: dps
def getX(self, plf=1.0):
self.X = (self.getRawX() * self.gain) * plf + (1.0 - plf) * self.X
return self.X
def getY(self, plf=1.0):
self.Y = (self.getRawY() * self.gain) * plf + (1.0 - plf) * self.Y
return self.Y
def getZ(self, plf=1.0):
self.Z = (self.getRawZ() * self.gain) * plf + (1.0 - plf) * self.Z
return self.Z
#Magnetometer
HMC5883L_ADDRESS = 0x1E
HMC5883L_CRA = 0x00
HMC5883L_CRB = 0x01
HMC5883L_MR = 0x02
HMC5883L_DO_X_H = 0x03
HMC5883L_DO_Z_H = 0x05
HMC5883L_DO_Y_H = 0x07
class HMC5883L(IMU):
ADDRESS = HMC5883L_ADDRESS
def __init__(self, X_OFFSET, Y_OFFSET, Z_OFFSET, ANGLE_OFFSET) :
# class properties
self.X = None
self.Y = None
self.Z = None
self.angle = None
self.Xoffset = X_OFFSET
self.Yoffset = Y_OFFSET
self.Zoffset = Z_OFFSET
# Declination Angle
DEG, MIN = ANGLE_OFFSET
self.angle_offset = radians(-1 * (DEG + (MIN / 60))) # unit: radians
# Formula: (deg + (min / 60.0)) / (180 / M_PI)
# ex: Hsinchu = Magnetic Declination: -4 deg, 32 min
# ex: Taichung = Magnetic Declination: -4 deg, 29 min
# http://www.magnetic-declination.com/
self.scale = 0.92 # convert bit value (LSB) to gauss
self.write_byte(HMC5883L_CRA, 0b01110000) # configuration register A, set to 8 samples @ 15Hz
self.write_byte(HMC5883L_CRB, 0b00100000) # configuration register B, 1.3 gain LSb / Gauss 1090 (default)
self.write_byte(HMC5883L_MR, 0b00000000) # mode register, continuous sampling
# degree: gauss
def getX(self):
self.X = (self.read_word_2c(HMC5883L_DO_X_H) - self.Xoffset) * self.scale
return self.X
def getY(self):
self.Y = (self.read_word_2c(HMC5883L_DO_Y_H) - self.Yoffset) * self.scale
return self.Y
def getZ(self):
self.Z = (self.read_word_2c(HMC5883L_DO_Z_H) - self.Zoffset) * self.scale
return self.Z
class gy801(object):
def __init__(self):
# accelorator caliberation
ACC_X_OFFSET = -0.03
ACC_Y_OFFSET = 0.04
ACC_Z_OFFSET = 0.059
# compass caliberation
COM_X_OFFSET = -205.2
COM_Y_OFFSET = -152.2
COM_Z_OFFSET = 56.5
ANGLE_OFFSET = (4, 32) # (4, 29) for Taichung, (4, 32) for Hsinchu
self.accel = ADXL345(ACC_X_OFFSET, ACC_Y_OFFSET, ACC_Z_OFFSET)
self.gyro = L3G4200D()
self.mag = HMC5883L(COM_X_OFFSET, COM_Y_OFFSET, COM_Z_OFFSET, ANGLE_OFFSET)
sensors = gy801()
acc = sensors.accel
mag = sensors.mag
gyro = sensors.gyro
mq_server = '192.168.1.8' # server IP
mq_id = 'esp00001'
mq_topic = 'data'
mq_user ='IMU'
mq_pass ='0101xx'
wifi = network.WLAN(network.STA_IF)
wifi.active(True)
try:
wifi.connect('Jerry_TOTOLINK_A950RG','fRog1615')
print('start to connect wifi')
for i in range(20):
print('try to connect wifi in {}s'.format(i))
utime.sleep(1)
if wifi.isconnected():
break
if wifi.isconnected():
print('WiFi connection OK!')
print('Network Config=',wifi.ifconfig())
else:
print('WiFi connection Error')
mqClient0 = MQTTClient(mq_id, mq_server, user=mq_user, password=mq_pass)
mqClient0.connect()
i = 0
while True:
data = {
'acc_X': acc.getX(),
'acc_Y': acc.getY(),
'acc_Z': acc.getZ(),
'mag_X': mag.getX(),
'mag_Y': mag.getY(),
'mag_Z': mag.getZ(),
'gyro_X': gyro.getX(),
'gyro_Y': gyro.getY(),
'gyro_Z': gyro.getZ(),
'timestamp':utime.ticks_us(),
}
mq_message = ujson.dumps(data)
mqClient0.publish(mq_topic, mq_message)
i = i + 1
print("message publish {}".format(i))
except Exception as e: print(e)