-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDifferentiation.cpp
160 lines (126 loc) · 3.37 KB
/
Differentiation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "Differentiation.h"
#include "Eigen.h"
#include "Field.h"
#include <iomanip>
MatrixX VerticalSecondDerivativeMatrix(stratifloat L, int N, BoundaryCondition originalBC)
{
MatrixX D = MatrixX::Zero(N,N);
ArrayX DY = dz(L,N);
ArrayX DYF = dzFractional(L,N);
if (originalBC == BoundaryCondition::Neumann)
{
for (int j=1; j<N-1; j++)
{
D(j,j-1) = 1/DY(j)/DYF(j);
D(j,j) = -1/DY(j)/DYF(j) -1/DY(j+1)/DYF(j);
D(j,j+1) = 1/DY(j+1)/DYF(j);
}
}
else
{
for (int j=2; j<N-1; j++)
{
D(j,j-1) = 1/DYF(j-1)/DY(j);
D(j,j) = -1/DYF(j-1)/DY(j) -1/DYF(j)/DY(j);
D(j,j+1) = 1/DYF(j)/DY(j);
}
}
return D;
}
MatrixX VerticalDerivativeMatrix(stratifloat L, int N, BoundaryCondition originalBC)
{
MatrixX D = MatrixX::Zero(N,N);
ArrayX DY = dz(L,N);
ArrayX DYF = dzFractional(L,N);
if (originalBC == BoundaryCondition::Neumann)
{
for (int j=2; j<=N-1; j++)
{
D(j,j-1) = -1/DY(j);
D(j,j) = 1/DY(j);
}
}
else
{
for (int j=1; j<=N-1; j++)
{
D(j,j) = -1/DYF(j);
D(j,j+1) = 1/DYF(j);
}
}
return D;
}
MatrixX NeumannReinterpolationFull(stratifloat L, int N)
{
ArrayX diff = dz(L,N);
ArrayX diffFrac = dzFractional(L,N);
MatrixX D = MatrixX::Zero(N,N);
// 2nd order interpolation
D.diagonal(-1) = diffFrac.tail(N-1)/(2*diff.tail(N-1));
D.diagonal(0).tail(N-1) = diffFrac.head(N-1)/(2*diff.tail(N-1));
return D;
}
MatrixX NeumannReinterpolationBar(stratifloat L, int N)
{
MatrixX D = MatrixX::Zero(N,N);
// quasi 2nd order interpolation
D.diagonal(-1).setConstant(0.5);
D.diagonal(0).tail(N-1).setConstant(0.5);
return D;
}
MatrixX NeumannReinterpolationTilde(stratifloat L, int N)
{
ArrayX diff = dz(L,N);
ArrayX diffFrac = dzFractional(L,N);
MatrixX D = MatrixX::Zero(N,N);
// quasi 2nd order interpolation
D.diagonal(-1) = diffFrac.head(N-1)/(2*diff.tail(N-1));
D.diagonal(0).tail(N-1) = diffFrac.tail(N-1)/(2*diff.tail(N-1));
return D;
}
MatrixX DirichletReinterpolation(stratifloat L, int N)
{
MatrixX D = MatrixX::Zero(N,N);
// 2nd order interpolation
D.diagonal(0).setConstant(0.5);
D.diagonal(1).setConstant(0.5);
return D;
}
ArrayX k(int n)
{
if (n==1)
{
// handle this separately for 2D
return ArrayX::Zero(1);
}
assert(n > 0);
ArrayX k(n);
// using this for k gives a result which matches the FT of the real
// derivative
k << ArrayX::LinSpaced(n / 3 + 1, 0, n / 3),
ArrayX::Zero(n-2*(n/3)-1),
ArrayX::LinSpaced(n / 3, -n / 3, -1);
return k;
}
ArrayXc KVector(stratifloat L, int N, int dimension)
{
ArrayXc ret = i*(k(N)*(2*pi)/L);
if (dimension == 2)
{
return ret;
}
else if(dimension == 1)
{
return ret.head(N/2 +1);
}
assert(0);
return ArrayXc();
}
DiagonalMatrix<stratifloat, -1> FourierSecondDerivativeMatrix(stratifloat L, int N, int dimension)
{
return (KVector(L,N,dimension)*KVector(L,N,dimension)).real().matrix().asDiagonal();
}
DiagonalMatrix<complex, -1> FourierDerivativeMatrix(stratifloat L, int N, int dimension)
{
return KVector(L,N,dimension).matrix().asDiagonal();
}