-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathArnoldi.h
227 lines (177 loc) · 7.05 KB
/
Arnoldi.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#pragma once
#include "StateVector.h"
template<typename VectorType>
class Arnoldi
{
public:
Arnoldi()
: q(K)
, H(K, K-1)
{
H.setZero();
}
stratifloat Run(const VectorType& at, VectorType& result, bool removePhaseShift=true, bool getSecond=false)
{
EvalFunction(at);
VectorType phaseShift;
phaseShift.u1 = ddx(at.u1);
phaseShift.u2 = ddx(at.u2);
phaseShift.u3 = ddx(at.u3);
phaseShift.b = ddx(at.b);
q[0].ExciteLowWavenumbers(0.1);
q[0].EnforceBCs();
q[0] *= 1/q[0].Norm();
K = q.size();
for (int k=1; k<K; k++)
{
// Arnoldi Algorithm
// find orthogonal basis q1,...,qn
// from x, A x, A^2 x, ...
// q_k = A q_k-1
q[k] = EvalLinearised(q[k-1]);
// remove component in direction of preceding vectors
for (int j=0; j<k; j++)
{
H(j,k-1) = q[j].Dot(q[k]);
q[k].MulAdd(-H(j,k-1), q[j]);
}
// normalise
H(k,k-1) = q[k].Norm();
q[k] *= 1/H(k,k-1);
// enforce BCs
q[k].EnforceBCs();
MatrixX subH = H.block(0,0,k,k);
EigenSolver<MatrixX> ces(subH, false);
ArrayXc complexEigenvalues = ces.eigenvalues();
ArrayX eigenvalues = sqrt(complexEigenvalues.real()*complexEigenvalues.real()
+ complexEigenvalues.imag()*complexEigenvalues.imag());
// transform phase shift into arnoldi space
VectorX phaseShiftTransformed = VectorX::Zero(k);
for (int j=0; j<k; j++)
{
phaseShiftTransformed[j] = phaseShift.Dot(q[j]);
}
// exclude things that look like a phase shift
// for (int j=0; j<k; j++)
// {
// complex proj = ces.eigenvectors().col(j).dot(phaseShiftTransformed);
// stratifloat prod = phaseShiftTransformed.norm()*ces.eigenvectors().col(j).norm();
// if (proj.real() > 0.7*prod || proj.real() < -0.7*prod)
// {
// eigenvalues(j) = 0;
// }
// }
int maxIndex;
stratifloat maxCoeff = eigenvalues.maxCoeff(&maxIndex);
eigenvalues(maxIndex) = 0;
stratifloat maxCoeff2 = eigenvalues.maxCoeff(&maxIndex);
eigenvalues(maxIndex) = 0;
stratifloat maxCoeff3 = eigenvalues.maxCoeff(&maxIndex);
std::cout << "At step " << k << ", maximum growth rates: "
<< maxCoeff << " & "
<< maxCoeff2 << " & "
<< maxCoeff3 << std::endl;
}
MatrixX subH = H.block(0,0,K-1,K-1);
EigenSolver<MatrixX> ces(subH, true);
ArrayXc complexEigenvalues = ces.eigenvalues();
ArrayX eigenvalues = sqrt(complexEigenvalues.real()*complexEigenvalues.real()
+ complexEigenvalues.imag()*complexEigenvalues.imag());
int maxIndex;
stratifloat maxCoeff = eigenvalues.maxCoeff(&maxIndex);
eigenvalues(maxIndex) = 0;
int maxIndex2;
stratifloat maxCoeff2 = eigenvalues.maxCoeff(&maxIndex2);
eigenvalues(maxIndex2) = 0;
int maxIndex3;
stratifloat maxCoeff3 = eigenvalues.maxCoeff(&maxIndex3);
VectorXc eigenvector = ces.eigenvectors().col(maxIndex);
VectorXc eigenvector2 = ces.eigenvectors().col(maxIndex2);
VectorXc eigenvector3 = ces.eigenvectors().col(maxIndex3);
// transform phase shift into arnoldi space
VectorX phaseShiftTransformed = VectorX::Zero(K-1);
for (int j=0; j<K-1; j++)
{
phaseShiftTransformed[j] = phaseShift.Dot(q[j]);
}
if (removePhaseShift)
{
// remove any phase shift component
eigenvector -= (eigenvector.dot(phaseShiftTransformed)/phaseShiftTransformed.squaredNorm())*phaseShiftTransformed;
eigenvector2 -= (eigenvector2.dot(phaseShiftTransformed)/phaseShiftTransformed.squaredNorm())*phaseShiftTransformed;
eigenvector3 -= (eigenvector3.dot(phaseShiftTransformed)/phaseShiftTransformed.squaredNorm())*phaseShiftTransformed;
}
eigenvector.normalize();
eigenvector2.normalize();
eigenvector3.normalize();
// convert back into full state space
VectorType result2;
VectorType result3;
VectorType imag1;
VectorType imag2;
VectorType imag3;
VectorType phaseShiftBack;
for (int k=0; k<K-1; k++)
{
result += eigenvector(k).real() * q[k];
imag1 += eigenvector(k).imag() * q[k];
result2 += eigenvector2(k).real() * q[k];
imag2 += eigenvector2(k).imag() * q[k];
result3 += eigenvector3(k).real() * q[k];
imag3 += eigenvector3(k).imag() * q[k];
phaseShiftBack += phaseShiftTransformed(k) * q[k];
}
result.PlotAll("eigReal");
result2.PlotAll("eig2Real");
result3.PlotAll("eig3Real");
phaseShiftBack.PlotAll("phaseShift");
result.SaveToFile("eigReal");
imag1.SaveToFile("eigImag");
result2.SaveToFile("eig2Real");
imag2.SaveToFile("eig2Imag");
result3.SaveToFile("eig3Real");
imag3.SaveToFile("eig3Imag");
std::cout << "Final eigenvalue: " << complexEigenvalues(maxIndex) << std::endl;
std::cout << "Final eigenvector: " << std::endl << eigenvector << std::endl;
std::cout << "Final eigenvalue: " << complexEigenvalues(maxIndex2) << std::endl;
std::cout << "Final eigenvector: " << std::endl << eigenvector2 << std::endl;
std::cout << "Final eigenvalue: " << complexEigenvalues(maxIndex3) << std::endl;
std::cout << "Final eigenvector: " << std::endl << eigenvector3 << std::endl;
//std::cout << "Full matrix: " << std::endl << subH << std::endl;
std::cout << "Full eigenvalues: " << std::endl << complexEigenvalues << std::endl;
if (getSecond)
{
result = result2;
return maxCoeff2;
}
else
{
return maxCoeff;
}
}
protected:
virtual VectorType EvalFunction(const VectorType& at) = 0;
virtual VectorType EvalLinearised(const VectorType& at) = 0;
stratifloat T = 11; // time interval for integration
VectorType linearAboutStart;
public:
int K = 1024; // max iterations
std::vector<VectorType> q;
MatrixX H; // upper Hessenberg matrix
};
class BasicArnoldi : public Arnoldi<StateVector>
{
virtual StateVector EvalFunction(const StateVector& at) override
{
StateVector result;
at.FullEvolve(T, result, false);
linearAboutStart = at;
return result;
}
virtual StateVector EvalLinearised(const StateVector& at) override
{
StateVector result;
at.LinearEvolve(T, linearAboutStart, result);
return result;
}
};