forked from mdenil/dropout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
440 lines (362 loc) · 15.8 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import numpy as np
import cPickle
import gzip
import os
import sys
import time
from collections import OrderedDict
import theano
import theano.tensor as T
from theano.ifelse import ifelse
import theano.printing
import theano.tensor.shared_randomstreams
from logistic_sgd import LogisticRegression
from load_data import load_umontreal_data, load_mnist
##################################
## Various activation functions ##
##################################
#### rectified linear unit
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
#### sigmoid
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
#### tanh
def Tanh(x):
y = T.tanh(x)
return(y)
class HiddenLayer(object):
def __init__(self, rng, input, n_in, n_out,
activation, W=None, b=None,
use_bias=False):
self.input = input
self.activation = activation
if W is None:
W_values = np.asarray(0.01 * rng.standard_normal(
size=(n_in, n_out)), dtype=theano.config.floatX)
W = theano.shared(value=W_values, name='W')
if b is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b')
self.W = W
self.b = b
if use_bias:
lin_output = T.dot(input, self.W) + self.b
else:
lin_output = T.dot(input, self.W)
self.output = (lin_output if activation is None else activation(lin_output))
# parameters of the model
if use_bias:
self.params = [self.W, self.b]
else:
self.params = [self.W]
def _dropout_from_layer(rng, layer, p):
"""p is the probablity of dropping a unit
"""
srng = theano.tensor.shared_randomstreams.RandomStreams(
rng.randint(999999))
# p=1-p because 1's indicate keep and p is prob of dropping
mask = srng.binomial(n=1, p=1-p, size=layer.shape)
# The cast is important because
# int * float32 = float64 which pulls things off the gpu
output = layer * T.cast(mask, theano.config.floatX)
return output
class DropoutHiddenLayer(HiddenLayer):
def __init__(self, rng, input, n_in, n_out,
activation, dropout_rate, use_bias, W=None, b=None):
super(DropoutHiddenLayer, self).__init__(
rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b,
activation=activation, use_bias=use_bias)
self.output = _dropout_from_layer(rng, self.output, p=dropout_rate)
class MLP(object):
"""A multilayer perceptron with all the trappings required to do dropout
training.
"""
def __init__(self,
rng,
input,
layer_sizes,
dropout_rates,
activations,
use_bias=True):
#rectified_linear_activation = lambda x: T.maximum(0.0, x)
# Set up all the hidden layers
weight_matrix_sizes = zip(layer_sizes, layer_sizes[1:])
self.layers = []
self.dropout_layers = []
next_layer_input = input
#first_layer = True
# dropout the input
next_dropout_layer_input = _dropout_from_layer(rng, input, p=dropout_rates[0])
layer_counter = 0
for n_in, n_out in weight_matrix_sizes[:-1]:
next_dropout_layer = DropoutHiddenLayer(rng=rng,
input=next_dropout_layer_input,
activation=activations[layer_counter],
n_in=n_in, n_out=n_out, use_bias=use_bias,
dropout_rate=dropout_rates[layer_counter])
self.dropout_layers.append(next_dropout_layer)
next_dropout_layer_input = next_dropout_layer.output
# Reuse the paramters from the dropout layer here, in a different
# path through the graph.
next_layer = HiddenLayer(rng=rng,
input=next_layer_input,
activation=activations[layer_counter],
# scale the weight matrix W with (1-p)
W=next_dropout_layer.W * (1 - dropout_rates[layer_counter]),
b=next_dropout_layer.b,
n_in=n_in, n_out=n_out,
use_bias=use_bias)
self.layers.append(next_layer)
next_layer_input = next_layer.output
#first_layer = False
layer_counter += 1
# Set up the output layer
n_in, n_out = weight_matrix_sizes[-1]
dropout_output_layer = LogisticRegression(
input=next_dropout_layer_input,
n_in=n_in, n_out=n_out)
self.dropout_layers.append(dropout_output_layer)
# Again, reuse paramters in the dropout output.
output_layer = LogisticRegression(
input=next_layer_input,
# scale the weight matrix W with (1-p)
W=dropout_output_layer.W * (1 - dropout_rates[-1]),
b=dropout_output_layer.b,
n_in=n_in, n_out=n_out)
self.layers.append(output_layer)
# Use the negative log likelihood of the logistic regression layer as
# the objective.
self.dropout_negative_log_likelihood = self.dropout_layers[-1].negative_log_likelihood
self.dropout_errors = self.dropout_layers[-1].errors
self.negative_log_likelihood = self.layers[-1].negative_log_likelihood
self.errors = self.layers[-1].errors
# Grab all the parameters together.
self.params = [ param for layer in self.dropout_layers for param in layer.params ]
def test_mlp(
initial_learning_rate,
learning_rate_decay,
squared_filter_length_limit,
n_epochs,
batch_size,
mom_params,
activations,
dropout,
dropout_rates,
results_file_name,
layer_sizes,
dataset,
use_bias,
random_seed=1234):
"""
The dataset is the one from the mlp demo on deeplearning.net. This training
function is lifted from there almost exactly.
:type dataset: string
:param dataset: the path of the MNIST dataset file from
http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
"""
assert len(layer_sizes) - 1 == len(dropout_rates)
# extract the params for momentum
mom_start = mom_params["start"]
mom_end = mom_params["end"]
mom_epoch_interval = mom_params["interval"]
datasets = load_mnist(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
epoch = T.scalar()
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
learning_rate = theano.shared(np.asarray(initial_learning_rate,
dtype=theano.config.floatX))
rng = np.random.RandomState(random_seed)
# construct the MLP class
classifier = MLP(rng=rng, input=x,
layer_sizes=layer_sizes,
dropout_rates=dropout_rates,
activations=activations,
use_bias=use_bias)
# Build the expresson for the cost function.
cost = classifier.negative_log_likelihood(y)
dropout_cost = classifier.dropout_negative_log_likelihood(y)
# Compile theano function for testing.
test_model = theano.function(inputs=[index],
outputs=classifier.errors(y),
givens={
x: test_set_x[index * batch_size:(index + 1) * batch_size],
y: test_set_y[index * batch_size:(index + 1) * batch_size]})
#theano.printing.pydotprint(test_model, outfile="test_file.png",
# var_with_name_simple=True)
# Compile theano function for validation.
validate_model = theano.function(inputs=[index],
outputs=classifier.errors(y),
givens={
x: valid_set_x[index * batch_size:(index + 1) * batch_size],
y: valid_set_y[index * batch_size:(index + 1) * batch_size]})
#theano.printing.pydotprint(validate_model, outfile="validate_file.png",
# var_with_name_simple=True)
# Compute gradients of the model wrt parameters
gparams = []
for param in classifier.params:
# Use the right cost function here to train with or without dropout.
gparam = T.grad(dropout_cost if dropout else cost, param)
gparams.append(gparam)
# ... and allocate mmeory for momentum'd versions of the gradient
gparams_mom = []
for param in classifier.params:
gparam_mom = theano.shared(np.zeros(param.get_value(borrow=True).shape,
dtype=theano.config.floatX))
gparams_mom.append(gparam_mom)
# Compute momentum for the current epoch
mom = ifelse(epoch < mom_epoch_interval,
mom_start*(1.0 - epoch/mom_epoch_interval) + mom_end*(epoch/mom_epoch_interval),
mom_end)
# Update the step direction using momentum
updates = OrderedDict()
for gparam_mom, gparam in zip(gparams_mom, gparams):
# Misha Denil's original version
#updates[gparam_mom] = mom * gparam_mom + (1. - mom) * gparam
# change the update rule to match Hinton's dropout paper
updates[gparam_mom] = mom * gparam_mom - (1. - mom) * learning_rate * gparam
# ... and take a step along that direction
for param, gparam_mom in zip(classifier.params, gparams_mom):
# Misha Denil's original version
#stepped_param = param - learning_rate * updates[gparam_mom]
# since we have included learning_rate in gparam_mom, we don't need it
# here
stepped_param = param + updates[gparam_mom]
# This is a silly hack to constrain the norms of the rows of the weight
# matrices. This just checks if there are two dimensions to the
# parameter and constrains it if so... maybe this is a bit silly but it
# should work for now.
if param.get_value(borrow=True).ndim == 2:
#squared_norms = T.sum(stepped_param**2, axis=1).reshape((stepped_param.shape[0],1))
#scale = T.clip(T.sqrt(squared_filter_length_limit / squared_norms), 0., 1.)
#updates[param] = stepped_param * scale
# constrain the norms of the COLUMNs of the weight, according to
# https://github.com/BVLC/caffe/issues/109
col_norms = T.sqrt(T.sum(T.sqr(stepped_param), axis=0))
desired_norms = T.clip(col_norms, 0, T.sqrt(squared_filter_length_limit))
scale = desired_norms / (1e-7 + col_norms)
updates[param] = stepped_param * scale
else:
updates[param] = stepped_param
# Compile theano function for training. This returns the training cost and
# updates the model parameters.
output = dropout_cost if dropout else cost
train_model = theano.function(inputs=[epoch, index], outputs=output,
updates=updates,
givens={
x: train_set_x[index * batch_size:(index + 1) * batch_size],
y: train_set_y[index * batch_size:(index + 1) * batch_size]})
#theano.printing.pydotprint(train_model, outfile="train_file.png",
# var_with_name_simple=True)
# Theano function to decay the learning rate, this is separate from the
# training function because we only want to do this once each epoch instead
# of after each minibatch.
decay_learning_rate = theano.function(inputs=[], outputs=learning_rate,
updates={learning_rate: learning_rate * learning_rate_decay})
###############
# TRAIN MODEL #
###############
print '... training'
best_params = None
best_validation_errors = np.inf
best_iter = 0
test_score = 0.
epoch_counter = 0
start_time = time.clock()
results_file = open(results_file_name, 'wb')
while epoch_counter < n_epochs:
# Train this epoch
epoch_counter = epoch_counter + 1
for minibatch_index in xrange(n_train_batches):
minibatch_avg_cost = train_model(epoch_counter, minibatch_index)
# Compute loss on validation set
validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
this_validation_errors = np.sum(validation_losses)
# Report and save progress.
print "epoch {}, test error {}, learning_rate={}{}".format(
epoch_counter, this_validation_errors,
learning_rate.get_value(borrow=True),
" **" if this_validation_errors < best_validation_errors else "")
best_validation_errors = min(best_validation_errors,
this_validation_errors)
results_file.write("{0}\n".format(this_validation_errors))
results_file.flush()
new_learning_rate = decay_learning_rate()
end_time = time.clock()
print(('Optimization complete. Best validation score of %f %% '
'obtained at iteration %i, with test performance %f %%') %
(best_validation_errors * 100., best_iter, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
if __name__ == '__main__':
import sys
# set the random seed to enable reproduciable results
# It is used for initializing the weight matrices
# and generating the dropout masks for each mini-batch
random_seed = 1234
initial_learning_rate = 1.0
learning_rate_decay = 0.998
squared_filter_length_limit = 15.0
n_epochs = 3000
batch_size = 100
layer_sizes = [ 28*28, 1200, 1200, 10 ]
# dropout rate for each layer
dropout_rates = [ 0.2, 0.5, 0.5 ]
# activation functions for each layer
# For this demo, we don't need to set the activation functions for the
# on top layer, since it is always 10-way Softmax
activations = [ ReLU, ReLU ]
#### the params for momentum
mom_start = 0.5
mom_end = 0.99
# for epoch in [0, mom_epoch_interval], the momentum increases linearly
# from mom_start to mom_end. After mom_epoch_interval, it stay at mom_end
mom_epoch_interval = 500
mom_params = {"start": mom_start,
"end": mom_end,
"interval": mom_epoch_interval}
dataset = 'data/mnist_batches.npz'
#dataset = 'data/mnist.pkl.gz'
if len(sys.argv) < 2:
print "Usage: {0} [dropout|backprop]".format(sys.argv[0])
exit(1)
elif sys.argv[1] == "dropout":
dropout = True
results_file_name = "results_dropout.txt"
elif sys.argv[1] == "backprop":
dropout = False
results_file_name = "results_backprop.txt"
else:
print "I don't know how to '{0}'".format(sys.argv[1])
exit(1)
test_mlp(initial_learning_rate=initial_learning_rate,
learning_rate_decay=learning_rate_decay,
squared_filter_length_limit=squared_filter_length_limit,
n_epochs=n_epochs,
batch_size=batch_size,
layer_sizes=layer_sizes,
mom_params=mom_params,
activations=activations,
dropout=dropout,
dropout_rates=dropout_rates,
dataset=dataset,
results_file_name=results_file_name,
use_bias=False,
random_seed=random_seed)