diff --git a/treesize.py b/treesize.py new file mode 100644 index 0000000..f5c7d67 --- /dev/null +++ b/treesize.py @@ -0,0 +1,167 @@ +####################################################################### +# +# Copyright (C) 2011 Steven Osborne. +# +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see http://www.gnu.org/licenses/. +####################################################################### + + +# Input: Connected graph "G", parameter "all" +# Output: A maximal induced tree or the list of all maximal induced trees + + + + + +from sage.all import * + +def max_induced_tree(G,all=False): + # Return a maximal induced tree, useful for computing tree size of a graph + if all == False: + if G.is_tree() == True: + return G + else: + F = Set(G.vertices()) + T = False + i = 1 + while i < G.num_verts() and T == False: + card = (F.subsets(i)).cardinality() + V = list(F.subsets(i)) + j = 0 + while j < card and T==False: + G1 = G.copy() + G1.delete_vertices(list(V[j])) + if G1.is_tree() == True: + T = True + j = j+1 + i = i+1 + return G1 + + else: # Return list of all maximal induced trees + trees = list([]) + if G.is_tree() == True: + trees.append(G) + return trees + else: + F = Set(G.vertices()) + T = False + i = 1 + while i < G.size() and T == False: + card = (F.subsets(i)).cardinality() + V = list(F.subsets(i)) + j = 0 + while j < card: + G1 = G.copy() + G1.delete_vertices(list(V[j])) + if G1.is_tree() == True: + trees.append(G1) + T = True + j = j+1 + i = i+1 + return trees + + + +def conn_edges_path_verts(G,v1,v2): + paths = G.all_paths(v1,v2) + Edges = [] + for i in range(0,len(paths)): + apath = paths[i] + for j in range(0, len(apath)-1): + a = apath[j] + b = apath[j+1] + edge = (min(a,b),max(a,b)) + Edges.append(edge) + return Set(Edges) + +# Determine if the following condition holds for a graph G +# There exists a maximal induced tree T of G such that for all v and w not in T, epsilon(v) and epsilon(w) have +# a nonempty intersection if and only if v and w are adjacent in G + +# current code + +def msr_is_ts(G, noTree=True): + + trees = max_induced_tree(G,all) + ts = trees[0].num_verts() + emptySet = (Set([1]).subsets()).first() + treeFound = False + goAhead = True + + if G.num_verts() - ts < 2: + goAhead = False + + n = 0 + while n < len(trees) and treeFound == False and goAhead == True: + + T = trees[n] + verts = list(Set(G.vertices()).difference(Set(T.vertices()))) # Vertices of G not in T + ext_pairs = list((Set(verts)).subsets(2)) # Iterate over all pairs of vertices in verts + keepGoing = 1 # If given any tree, epsilon(v) cap epsilon(w) = {} iff v,w adjacent fails, move to next tree + + k = 0 + while k < len(ext_pairs) and keepGoing == 1: + + twoVerts = list([list(ext_pairs[k])[0],list(ext_pairs[k])[1]]) #put v,w in list form + twoVertsEdgeSets = list([]) + + for i in range(0,2): # find adjacent vertices of v and w in T + + adjacent = list([]) + for j in T.vertices(): + if (min(twoVerts[i],j),max(twoVerts[i],j),{}) in G.edges(): + adjacent.append(j) + adjacent = Set(adjacent) + int_pairs = list(adjacent.subsets(2)) # Iterate over all vertices in T adjacent to v (or w) + + for l in range(0,len(int_pairs)): #build epsilon(v) and epsilon(w) + + v1 = list(int_pairs[l])[0] + v2 = list(int_pairs[l])[1] + if l == 0: + edgeSets = conn_edges_path_verts(T, v1,v2) + else: + edgeSets = edgeSets.union(conn_edges_path_verts(T,v1,v2)) + + if len(int_pairs) == 0: + twoVertsEdgeSets.append(emptySet) + else: + twoVertsEdgeSets.append(edgeSets) + + if (min(twoVerts[0],twoVerts[1]),max(twoVerts[0],twoVerts[1]),{}) in G.edges(): # v,w adjacent + + if twoVertsEdgeSets[0].intersection(twoVertsEdgeSets[1]) == emptySet: # iff fails + keepGoing = 0 + + else: # v,w not adjacent + + if twoVertsEdgeSets[0].intersection(twoVertsEdgeSets[1]) != emptySet: # iff fails + keepGoing = 0 + + k = k + 1 + + n = n + 1 + + if keepGoing == 1: + treeFound = True + success = 'YES' + + if n == len(trees) and treeFound == False: + success = 'NO' + + if goAhead == False: + print 'YES' + else: + print success