-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage_model.py
339 lines (294 loc) · 12.7 KB
/
language_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Author: Jan Buys
# Code credit: BIST parser; pytorch example word_language_model;
# pytorch master source
import argparse
import math
import os
import random
import sys
import time
from collections import defaultdict
from pathlib import Path
import numpy as py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import rnn_lm
import data_utils
import nn_utils
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', required=True,
help='Directory of data files')
parser.add_argument('--data_working_dir', required=True,
help='Working directory for data files')
parser.add_argument('--working_dir', required=True,
help='Working directory for output')
parser.add_argument('--train_name',
help='Train file name (excluding .txt)',
default='train')
parser.add_argument('--dev_name',
help='Dev file name (excluding .txt',
default='dev')
parser.add_argument('--test_name',
help='Test file name (excluding .txt)',
default='test')
parser.add_argument('--test_file',
help='Raw text file to parse with trained model',
metavar='FILE')
parser.add_argument('--replicate_rnng_data', action='store_true',
default=False)
parser.add_argument('--reset_vocab', action='store_true',
default=False)
parser.add_argument('--data_fixed_vocab', action='store_true',
default=False)
parser.add_argument('--score', action='store_true',
help='Only score, assuming existing model',
default=False)
parser.add_argument('--test', action='store_true',
help='Evaluate test set',
default=False)
parser.add_argument('--embedding_size', type=int, default=650,
help='size of word embeddings')
parser.add_argument('--hidden_size', type=int, default=650,
help='humber of hidden units per layer')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers')
parser.add_argument('--lr', type=float, default=1.0,
help='initial learning rate')
parser.add_argument('--grad_clip', type=float, default=5,
help='gradient clipping')
parser.add_argument('--num_init_lr_epochs', type=int, default=6,
help='number of epochs before learning rate decay')
parser.add_argument('--patience', type=int, default=10,
help='Stop training if not improving for some number of epochs')
parser.add_argument('--lr_decay', type=float, default=1.2,
help='learning rate decay per epoch')
parser.add_argument('--tie_weights', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--reduce_lr', action='store_true',
help='reduce lr if val ppl does not improve')
parser.add_argument('--xavier_init', action='store_true',
help='Xavier initialization')
parser.add_argument('--init_weight_range', type=float, default=0.1,
help='weight initialization range')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate')
parser.add_argument('--epochs', type=int, default=80,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=16, metavar='N',
help='batch size')
parser.add_argument('--adam', action='store_true',
help='use Adam optimizer')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--small_data', action='store_true',
help='use small version of dataset')
parser.add_argument('--logging_interval', type=int, default=1000,
metavar='N', help='report ppl every x steps')
parser.add_argument('--save_model', type=str, default='model.pt',
help='path to save the final model')
args = parser.parse_args()
torch.manual_seed(args.seed)
random.seed(args.seed)
if args.cuda:
assert torch.cuda.is_available(), 'Cuda not available.'
torch.cuda.manual_seed(args.seed)
data_path = args.data_dir + '/'
data_working_path = args.data_working_dir + '/'
working_path = args.working_dir + '/'
# Prepare training data
vocab_path = Path(data_working_path + 'vocab')
if args.data_fixed_vocab: # assume that way vocab is constructed won't change
sentences, word_vocab = data_utils.read_sentences_fixed_vocab(
data_path, args.train_name, data_working_path)
elif vocab_path.is_file() and not args.reset_vocab:
sentences, word_vocab = data_utils.read_sentences_given_vocab(
data_path, args.train_name, data_working_path,
replicate_rnng=args.replicate_rnng_data)
else:
print('Preparing vocab')
sentences, word_vocab = data_utils.read_sentences_create_vocab(
data_path, args.train_name, data_working_path,
replicate_rnng=args.replicate_rnng_data)
# Read dev and test files with given vocab
if args.data_fixed_vocab:
dev_sentences, _ = data_utils.read_sentences_given_fixed_vocab(
data_path, args.dev_name, data_working_path)
test_sentences, _ = data_utils.read_sentences_given_fixed_vocab(
data_path, args.test_name, data_working_path)
else:
dev_sentences, _ = data_utils.read_sentences_given_vocab(
data_path, args.dev_name, data_working_path,
replicate_rnng=args.replicate_rnng_data)
test_sentences, _ = data_utils.read_sentences_given_vocab(
data_path, args.test_name, data_working_path,
replicate_rnng=args.replicate_rnng_data)
if args.small_data:
sentences = sentences[:1000]
dev_sentences = dev_sentences #[:100]
#data_utils.create_length_histogram(sentences)
def score(val_sentences):
vocab_size = len(word_vocab)
working_path = args.working_dir + '/'
print('Loading model')
# Load model.
model_fn = working_path + args.save_model
with open(model_fn, 'rb') as f:
model = torch.load(f)
if args.cuda:
model.cuda()
print('Done loading model')
eval_start_time = time.time()
total_loss, total_length, total_length_more = evaluate(val_sentences, model)
val_loss = total_loss[0] / total_length
val_loss_more = total_loss[0] / total_length_more
print('| end of scoring | time: {:5.2f}s | {:5d} tokens | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format((time.time() - eval_start_time),
total_length, val_loss, math.exp(val_loss)))
print(' | valid loss more {:5.2f} | valid ppl {:8.2f}'.format(
val_loss_more, math.exp(val_loss_more)))
def evaluate(val_sentences, model):
val_batch_size = 1
total_loss = 0
total_loss_direct = 0
total_length = 0
total_length_more = 0
model.eval()
criterion = nn.CrossEntropyLoss(size_average=False)
log_normalize = nn.LogSoftmax()
calculate_direct = False
vocab_size = len(word_vocab)
for val_sent in val_sentences:
hidden_state = model.init_hidden(val_batch_size)
data, targets = nn_utils.get_sentence_batch([val_sent], args.cuda, evaluation=True)
output, hidden_state = model(data, hidden_state)
output_flat = output.view(-1, vocab_size)
total_loss += criterion(output_flat, targets).data
assert output_flat.size()[0] == len(val_sent)
# direct loss calculation
if calculate_direct:
word_ids = [int(x) for x in targets.view(-1).data]
word_dist_list = log_normalize(output_flat)
for i, word_id in enumerate(word_ids):
total_loss_direct -= nn_utils.to_numpy(word_dist_list[i, word_id])
total_length += len(val_sent) - 1
total_length_more += len(val_sent)
if calculate_direct:
val_loss_direct = total_loss_direct[0] / total_length
print(' | valid loss direct {:5.2f} | valid ppl {:8.2f}'.format(val_loss_direct, math.exp(val_loss_direct)))
return total_loss, total_length, total_length_more
def train():
lr = args.lr
vocab_size = len(word_vocab)
batch_size = args.batch_size
# Build the model
model = rnn_lm.RNNLM(vocab_size, args.embedding_size,
args.hidden_size, args.num_layers, args.dropout,
args.init_weight_range, args.xavier_init, args.tie_weights, args.cuda)
if args.cuda:
model.cuda()
criterion = nn.CrossEntropyLoss(size_average=False)
if args.adam:
optimizer = optim.Adam(model.parameters(), lr=lr)
else:
optimizer = optim.SGD(model.parameters(), lr=lr)
# Loop over epochs.
# Sentence iid, batch size 1 training.
prev_val_loss = None
patience_count = 0
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
random.shuffle(sentences)
sentences.sort(key=len)
model.train()
total_loss = 0
total_num_tokens = 0
global_loss = 0
global_num_tokens = 0
batch_count = 0
start_time = time.time()
i = 0
while i < len(sentences):
# Training loop
length = len(sentences[i])
j = i + 1
while (j < len(sentences) and len(sentences[j]) == length
and (j - i) < batch_size):
j += 1
# dimensions [length x batch]
data, targets = nn_utils.get_sentence_batch(
[sentences[k] for k in range(i, j)], args.cuda)
local_batch_size = j - i
i = j
batch_count += 1
model.zero_grad()
hidden_state = model.init_hidden(local_batch_size)
output, hidden_state = model(data, hidden_state)
loss = criterion(output.view(-1, vocab_size), targets)
loss.backward()
if args.grad_clip > 0:
nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
optimizer.step()
total_loss += loss.data
global_loss += loss.data
batch_tokens = (data.size()[0] - 1)*local_batch_size
total_num_tokens += batch_tokens
global_num_tokens += batch_tokens
if batch_count % args.logging_interval == 0 and i > 0:
cur_loss = total_loss[0] / total_num_tokens
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d} batches | lr {:02.4f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch_count, lr,
elapsed * 1000 / args.logging_interval, cur_loss,
math.exp(cur_loss)))
total_loss = 0
total_num_tokens = 0
start_time = time.time()
avg_global_loss = global_loss[0] / global_num_tokens
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | {:5d} batches | tokens {:5d} | loss {:5.2f} | ppl {:8.2f}'.format(
epoch, (time.time() - epoch_start_time), batch_count, global_num_tokens,
avg_global_loss, math.exp(avg_global_loss)))
# Evaluate
total_loss, total_length, total_length_more = evaluate(dev_sentences, model)
val_loss = total_loss[0] / total_length
val_loss_more = total_loss[0] / total_length_more
print('| end of epoch {:3d} | time: {:5.2f}s | {:5d} tokens | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
total_length, val_loss, math.exp(val_loss)))
print(' | valid loss more {:5.2f} | valid ppl {:8.2f}'.format(val_loss_more,
math.exp(val_loss_more)))
print('-' * 89)
# Anneal the learning rate.
if (not args.adam and args.num_init_lr_epochs > 0
and epoch >= args.num_init_lr_epochs):
if args.reduce_lr and val_loss > prev_val_loss:
lr /= 2
else:
lr = lr / args.lr_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if prev_val_loss and val_loss > prev_val_loss:
patience_count += 1
else:
patience_count = 0
prev_val_loss = val_loss
# save the model
if args.save_model != '':
model_fn = working_path + args.save_model
with open(model_fn, 'wb') as f:
torch.save(model, f)
if args.patience > 0 and patience_count >= args.patience:
break
if args.score:
if args.test:
score(test_sentences)
else:
score(dev_sentences)
else:
train()