forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMath.h
542 lines (490 loc) · 16.2 KB
/
Math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#pragma once
#include <cstdlib>
#include <cstdint>
#include <cmath>
#include <cfloat>
#include <limits>
#include <type_traits>
#include <c10/util/math_compat.h>
#ifndef M_PIf
#define M_PIf 3.1415926535f
#endif // M_PIf
/* The next function is taken from https://github.com/antelopeusersgroup/antelope_contrib/blob/master/lib/location/libgenloc/erfinv.c.
Below is the copyright.
Output was modified to be inf or -inf when input is 1 or -1. */
/*
Copyright (c) 2014 Indiana University
All rights reserved.
Written by Prof. Gary L. Pavlis, Dept. of Geol. Sci.,
Indiana University, Bloomington, IN
This software is licensed under the New BSD license:
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
Neither the name of Indiana University nor
the names of its contributors may be used to endorse
or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#define CENTRAL_RANGE 0.7
template <typename T>
static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
calc_erfinv(T y) {
/* Function to calculate inverse error function. Rational approximation
is used to generate an initial approximation, which is then improved to
full accuracy by two steps of Newton's method. Code is a direct
translation of the erfinv m file in matlab version 2.0.
Author: Gary L. Pavlis, Indiana University
Date: February 1996
*/
T x, z, num, dem; /*working variables */
/* coefficients in rational expansion */
T a[4] = { T(0.886226899), T(-1.645349621), T(0.914624893), T(-0.140543331) };
T b[4] = { T(-2.118377725), T(1.442710462), T(-0.329097515), T(0.012229801) };
T c[4] = { T(-1.970840454), T(-1.624906493), T(3.429567803), T(1.641345311) };
T d[2] = { T(3.543889200), T(1.637067800) };
T y_abs = std::abs(y);
if(y_abs > 1.0) return std::numeric_limits<T>::quiet_NaN();
#ifdef _WIN32
// error C2039: '_copysign': is not a member of 'std'
if(y_abs == 1.0) return copysign(std::numeric_limits<T>::infinity(), y);
#else
if(y_abs == 1.0) return std::copysign(std::numeric_limits<T>::infinity(), y);
#endif
if(y_abs <= static_cast<T>(CENTRAL_RANGE)) {
z = y * y;
num = (((a[3]*z + a[2])*z + a[1])*z + a[0]);
dem = ((((b[3]*z + b[2])*z + b[1])*z +b[0]) * z + static_cast<T>(1.0));
x = y * num / dem;
}
else{
z = std::sqrt(-std::log((static_cast<T>(1.0)-y_abs)/static_cast<T>(2.0)));
num = ((c[3]*z + c[2])*z + c[1]) * z + c[0];
dem = (d[1]*z + d[0])*z + static_cast<T>(1.0);
#ifdef _WIN32
// error C2039: '_copysign': is not a member of 'std'
x = copysign(num, y) / dem;
#else
x = std::copysign(num, y) / dem;
#endif
}
/* Two steps of Newton-Raphson correction */
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(M_PI)))*std::exp(-x*x));
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(M_PI)))*std::exp(-x*x));
return(x);
}
#undef CENTRAL_RANGE
/*
* Note [3-Clause BSD License for the Cephes Math Library]
* Code derived from implementations in the Cephes Math Library should mention its derivation and reference
* this note (ex. 'This function is derived from the implementation of X in the Cephes Math Library. See note
* [3-Clause BSD License for the Cephes Math Library]. The license is:
* Copyright (c) 2018, Steven Moshier
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Steven Moshier BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This function is derived from the implementation of the zeta function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline double zeta(double x, double q) {
static double MACHEP = 1.11022302462515654042E-16;
static double A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
int i = 0;
double a, b, k, s, t, w;
if (x == 1.0) {
return INFINITY;
}
if (x < 1.0) {
return std::numeric_limits<double>::quiet_NaN();
}
if (q <= 0.0) {
if (q == floor(q)) {
return INFINITY;
}
if (x != floor(x)) {
return std::numeric_limits<double>::quiet_NaN();
}
}
s = std::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while ((i < 9) || (a <= 9.0)) {
i += 1;
a += 1.0;
b = std::pow(a, -x);
s += b;
if ((-MACHEP * s < b) && (b < MACHEP * s)) {
return s;
}
};
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for (int i = 0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / A[i];
s = s + t;
t = std::abs(t / s);
if (t < MACHEP) {
return s;
}
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
return s;
}
static inline double polevl(double x, double *A, size_t len) {
double result = 0;
for (size_t i = 0; i <= len; i++) {
result = result * x + A[i];
}
return result;
}
static inline float polevlf(float x, float *A, size_t len) {
float result = 0;
for (size_t i = 0; i <= len; i++) {
result = result * x + A[i];
}
return result;
}
static inline double trigamma(double x) {
double sign = +1;
double result = 0;
if (x < 0.5) {
sign = -1;
const double sin_pi_x = sin(M_PI * x);
result -= (M_PI * M_PI) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const double ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (1./6 - ixx * (1./30 - ixx * (1./42)))) / x;
return sign * result;
}
static inline float trigamma(float x) {
float sign = +1;
float result = 0;
if (x < 0.5f) {
sign = -1;
const float sin_pi_x = sinf(M_PIf * x);
result -= (M_PIf * M_PIf) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const float ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (1.f/6 - ixx * (1.f/30 - ixx * (1.f/42)))) / x;
return sign * result;
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline double calc_digamma(double x) {
static double PSI_10 = 2.25175258906672110764;
if (x == 0) {
return INFINITY;
}
int x_is_integer = x == floor(x);
if (x < 0) {
if (x_is_integer) {
return INFINITY;
}
return calc_digamma(1 - x) - M_PI / tan(M_PI * x);
}
// Push x to be >= 10
double result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10;
}
// Compute asymptotic digamma
static double A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
double y = 0;
if (x < 1.0e17) {
double z = 1.0 / (x * x);
y = z * polevl(z, A, 6);
}
return result + log(x) - (0.5 / x) - y;
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline float calc_digamma(float x) {
static float PSI_10 = 2.25175258906672110764f;
if (x == 0) {
return INFINITY;
}
int x_is_integer = x == floorf(x);
if (x < 0) {
if (x_is_integer) {
return INFINITY;
}
// Avoid rounding errors for `tan`'s input.
// Those make a big difference at extreme values.
float pi_over_tan_pi_x = (float)(M_PI / tan(M_PI * (double)x));
return calc_digamma(1 - x) - pi_over_tan_pi_x;
}
// Push x to be >= 10
float result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10;
}
// Compute asymptotic digamma
static float A[] = {
8.33333333333333333333E-2f,
-2.10927960927960927961E-2f,
7.57575757575757575758E-3f,
-4.16666666666666666667E-3f,
3.96825396825396825397E-3f,
-8.33333333333333333333E-3f,
8.33333333333333333333E-2f,
};
float y = 0;
if (x < 1.0e17f) {
float z = 1 / (x * x);
y = z * polevlf(z, A, 6);
}
return result + logf(x) - (0.5f / x) - y;
}
static inline double calc_polygamma(int64_t n, double x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0 : -1.0) * std::exp(lgamma(double(n) + 1.0)) *
zeta(double(n + 1), x);
}
static inline float calc_polygamma(int64_t n, float x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0f : -1.0f) * std::exp(lgamma(double(n) + 1.0)) *
zeta(double(n + 1), x);
}
inline c10::BFloat16 calc_erfinv(c10::BFloat16 a) { return calc_erfinv(float(a)); }
template <typename T>
static T abs_impl(T v) {
return std::abs(v);
}
template <>
uint8_t abs_impl(uint8_t v) {
return v;
}
template <typename T>
static inline typename std::enable_if<std::is_integral<T>::value, T>::type
calc_gcd(T a, T b) {
a = abs_impl(a);
b = abs_impl(b);
while (a != 0) {
T c = a;
a = b % a;
b = c;
}
return b;
}
/*
* This function is derived from the implementation of the chbevl function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*
* Evaluates the series
*
* len-1
* - '
* y = > array[i] T (x/2)
* - i
* i=0
*
* of Chebyshev polynomials Ti at argument x/2.
*
* Coefficients are stored in reverse order, i.e. the zero order term is last in the array. Note len is the number of
* coefficients, not the order.
*
* If coefficients are for the interval a to b, x must have been transformed to x -> 2(2x - b - a)/(b-a) before
* entering the routine. This maps x from (a, b) to (-1, 1), over which the Chebyshev polynomials are defined.
*
* If the coefficients are for the inverted interval, in which (a, b) is mapped to (1/b, 1/a), the transformation
* required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, this becomes x -> 4a/x - 1.
*/
template <typename T>
static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
chbevl(T x, T array[], size_t len) {
T b0, b1, b2;
b0 = array[0];
b1 = static_cast<T>(0.0);
for (size_t i = 1; i < len; ++i) {
b2 = b1;
b1 = b0;
b0 = x * b1 - b2 + array[i];
}
return (static_cast<T>(0.5) * (b0 - b2));
}
/*
* This function is derived from the implementation of the i0 function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*
* Computes an approximation of the zeroth order modified Bessel function of the first kind.
* The approximation is actually two (sub)approximations, both using a Chebyshev polynomial expansion.
* One approximates the function over [0, 8], and the other over (8, infinity). This function takes the absolute value
* of all inputs to convert them into the domain of the approximation.
*/
template <typename T>
static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
calc_i0(T _x) {
T x = std::abs(_x);
/* Chebyshev coefficients for exp(-x) I0(x)
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I0(x) } = 1.
*/
static T A[] = {
-4.41534164647933937950E-18,
3.33079451882223809783E-17,
-2.43127984654795469359E-16,
1.71539128555513303061E-15,
-1.16853328779934516808E-14,
7.67618549860493561688E-14,
-4.85644678311192946090E-13,
2.95505266312963983461E-12,
-1.72682629144155570723E-11,
9.67580903537323691224E-11,
-5.18979560163526290666E-10,
2.65982372468238665035E-9,
-1.30002500998624804212E-8,
6.04699502254191894932E-8,
-2.67079385394061173391E-7,
1.11738753912010371815E-6,
-4.41673835845875056359E-6,
1.64484480707288970893E-5,
-5.75419501008210370398E-5,
1.88502885095841655729E-4,
-5.76375574538582365885E-4,
1.63947561694133579842E-3,
-4.32430999505057594430E-3,
1.05464603945949983183E-2,
-2.37374148058994688156E-2,
4.93052842396707084878E-2,
-9.49010970480476444210E-2,
1.71620901522208775349E-1,
-3.04682672343198398683E-1,
6.76795274409476084995E-1
};
/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
*/
static T B[] = {
-7.23318048787475395456E-18,
-4.83050448594418207126E-18,
4.46562142029675999901E-17,
3.46122286769746109310E-17,
-2.82762398051658348494E-16,
-3.42548561967721913462E-16,
1.77256013305652638360E-15,
3.81168066935262242075E-15,
-9.55484669882830764870E-15,
-4.15056934728722208663E-14,
1.54008621752140982691E-14,
3.85277838274214270114E-13,
7.18012445138366623367E-13,
-1.79417853150680611778E-12,
-1.32158118404477131188E-11,
-3.14991652796324136454E-11,
1.18891471078464383424E-11,
4.94060238822496958910E-10,
3.39623202570838634515E-9,
2.26666899049817806459E-8,
2.04891858946906374183E-7,
2.89137052083475648297E-6,
6.88975834691682398426E-5,
3.36911647825569408990E-3,
8.04490411014108831608E-1
};
if (x <= 8.0) {
T y = (x / 2.0) - 2.0;
return static_cast<T>(std::exp(x) * chbevl(y, A, 30));
}
return static_cast<T>(std::exp(x) * chbevl(static_cast<T>(32.0 / x - 2.0), B, 25) / std::sqrt(x));
}
// Upcast bfloat16 input to float for numerical accuracy purposes
inline c10::BFloat16 calc_i0(c10::BFloat16 a) { return calc_i0(static_cast<float>(a)); }