generated from jamesmbaazam/QuartoPresentationTemplate
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_05_seir_model.qmd
130 lines (87 loc) · 4.13 KB
/
_05_seir_model.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
![Timeline of infection. Source: Keeling & Rohani, 2008](images/infection_timeline.png)
------------------------------------------------------------------------
::::: columns
::: {.column width="30%"}
![The SARS-COV-2 virus](images/corona_virus.jpeg)
![The Ebola virus](images/ebola_virus.jpeg)
:::
::: {.column width="70%"}
- Some diseases have an [latent/exposed period]{style="color:tomato;"} during which individuals are [infected but not yet infectious]{style="color:tomato;"}. Examples include pertussis, COVID-19, and Ebola.
- Disease transmission does not occur during the latent period because of low levels of the virus in the host.
:::
:::::
------------------------------------------------------------------------
![](images/model_diagrams/model_diagrams.007.jpeg)
------------------------------------------------------------------------
::::: columns
::: {.column width="50%"}
![](images/model_diagrams/model_diagrams.007.jpeg)
:::
::: {.column width="50%"}
- The SEIR model extends the SIR model to include an exposed compartment, [$E$]{style="color:blue;"}.
- [$E$]{style="color:blue;"}: infected but are not yet infectious.
- Individuals stay in [$E$]{style="color:blue;"} for [$1/\sigma$]{style="color:blue;"} days before moving to $I$.
:::
:::::
------------------------------------------------------------------------
::::: columns
::: {.column width="60%"}
![](images/model_diagrams/model_diagrams.008.jpeg){width="80%"}
:::
::: {.column width="40%"}
Model equations: \begin{align*}
\frac{dS}{dt} & = -\beta S I \\
\frac{dE}{dt} & = \beta S I - \color{orange}{\sigma E} \\
\frac{dI}{dt} & = \color{orange}{\sigma E} - \gamma I \\
\frac{dR}{dt} & = \gamma I
\end{align*}
:::
:::::
------------------------------------------------------------------------
### SEIR model with births and deaths
- Let's relax the assumption about births and deaths in the population.
- We will assume that the susceptible population is replenished with new individuals at a constant rate, $\mu$.
- We will also assume that everyone dies at a constant rate, $\mu$.
------------------------------------------------------------------------
Our model schematic now looks like this:
![](images/model_diagrams/model_diagrams.009.jpeg)
::: notes
Explain in terms of inflows and outflows
:::
------------------------------------------------------------------------
::::: columns
::: {.column width="50%"}
![](images/model_diagrams/model_diagrams.009.jpeg)
:::
::: {.column width="50%"}
The model equations now become:
\begin{align}
\frac{dS}{dt} & = \color{green}{\mu N} - \beta S I - \color{blue}{\mu} S \\
\frac{dE}{dt} & = \beta S I - \sigma E - \color{blue}{\mu} E \\
\frac{dI}{dt} & = \sigma E - \gamma I - \color{blue}{\mu} I \\
\frac{dR}{dt} & = \gamma I - \color{blue}{\mu} R
\end{align}
:::
:::::
<!-- ------------------------------------------------------------------------ -->
<!-- #### Practicals -->
<!-- - Let's implement the SEIR model in R using the script `02_seir.Rmd`. -->
------------------------------------------------------------------------
::: {.callout-caution collapse="true" icon="false"}
#### Discussion
What is the $R0$ of the SEIR model?
:::
------------------------------------------------------------------------
### The R0 of the SEIR Model
- Beyond the SIR model, calculating $R0$ for more complex models can be challenging due to the presence of multiple compartments.
- For complex models, we use the [next generation matrix]{style="color:tomato;"} approach [@diekmann1990definition; @diekmann2010construction].
::: {.callout-note collapse="true" icon="false"}
Using the next generation matrix approach, we can show that the SEIR model with constant births and deaths has $$R0 = \dfrac{\beta \sigma}{(\gamma + \mu)(\sigma + \mu)}$$.
:::
------------------------------------------------------------------------
<!-- {{< include _05_01_next_generation_matrix.qmd >}} -->
<!-- ------------------------------------------------------------------------ -->
### Numerical simulations
#### R Practicals
- We can use the same approach as the SIR model to simulate the SEIR model.
- Modify the `sir.Rmd` script to simulate the SEIR model.