forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContext.cpp
564 lines (470 loc) · 15.7 KB
/
Context.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#include <ATen/Config.h>
#include <ATen/Context.h>
#include <c10/core/CPUAllocator.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <stdexcept>
#include <ATen/cpu/FlushDenormal.h>
#ifdef USE_FBGEMM
#include <fbgemm/Fbgemm.h>
#endif // USE_FBGEMM
#if defined(__aarch64__) && !defined(C10_MOBILE)
#include <cpuinfo.h>
#endif
namespace at {
Context::Context() = default;
// TODO: This could be bad juju if someone calls globalContext() in the
// destructor of an object with static lifetime.
Context& globalContext() {
static Context globalContext_;
return globalContext_;
}
// NB: This method is *purely* whether or not a user requested
// that CuDNN was enabled, it doesn't actually say anything about
// whether or not CuDNN is actually usable.
bool Context::userEnabledCuDNN() const {
return enabled_cudnn;
}
void Context::setUserEnabledCuDNN(bool e) {
enabled_cudnn = e;
}
bool Context::userEnabledMkldnn() const {
return enabled_mkldnn;
}
void Context::setUserEnabledMkldnn(bool e) {
enabled_mkldnn = e;
}
bool Context::deterministicCuDNN() const {
return deterministic_cudnn;
}
void Context::setDeterministicCuDNN(bool b) {
deterministic_cudnn = b;
}
bool Context::deterministicMkldnn() const {
return deterministic_mkldnn;
}
void Context::setDeterministicMkldnn(bool b) {
deterministic_mkldnn = b;
}
bool Context::deterministicAlgorithms() const {
return _deterministic_algorithms;
}
bool Context::deterministicAlgorithmsWarnOnly() const {
return _deterministic_algorithms_warn_only;
}
void Context::setDeterministicAlgorithms(bool b, bool warn_only=false) {
_deterministic_algorithms = b;
_deterministic_algorithms_warn_only = warn_only;
}
bool Context::deterministicFillUninitializedMemory() const {
return _deterministic_fill_uninitialized_memory;
}
void Context::setDeterministicFillUninitializedMemory(bool b) {
_deterministic_fill_uninitialized_memory = b;
}
void Context::alertNotDeterministic(c10::string_view const& caller) {
if (globalContext().deterministicAlgorithms()) {
if (globalContext().deterministicAlgorithmsWarnOnly()) {
TORCH_WARN(
caller, " does not have a deterministic implementation, but you set "
"'torch.use_deterministic_algorithms(True, warn_only=True)'. "
"You can file an issue at https://github.com/pytorch/pytorch/issues "
"to help us prioritize adding deterministic support for this operation.");
} else {
TORCH_CHECK(false,
caller, " does not have a deterministic implementation, but you set "
"'torch.use_deterministic_algorithms(True)'. You can turn off "
"determinism just for this operation, or you can use the "
"'warn_only=True' option, if that's acceptable for your application. "
"You can also file an issue at https://github.com/pytorch/pytorch/issues "
"to help us prioritize adding deterministic support for this operation.");
}
}
}
bool Context::userEnabledNNPACK() const {
return enabled_nnpack;
}
void Context::setUserEnabledNNPACK(bool e) {
enabled_nnpack = e;
}
bool Context::allowTF32CuDNN() const {
return allow_tf32_cudnn;
}
void Context::setAllowTF32CuDNN(bool b) {
allow_tf32_cudnn = b;
}
bool Context::userEnabledFlashSDP() const {
return enabled_flashSDP;
}
void Context::setSDPUseFlash(bool e) {
enabled_flashSDP = e;
}
bool Context::userEnabledMemEfficientSDP() const {
return enabled_mem_efficientSDP;
}
void Context::setSDPUseMemEfficient(bool e) {
enabled_mem_efficientSDP = e;
}
bool Context::userEnabledMathSDP() const {
return enabled_mathSDP;
}
void Context::setSDPUseMath(bool e) {
enabled_mathSDP = e;
}
bool Context::allowFP16BF16ReductionMathSDP() const {
return allow_fp16_bf16_reduction_mathSDP;
}
void Context::setAllowFP16BF16ReductionMathSDP(bool e) {
allow_fp16_bf16_reduction_mathSDP = e;
}
bool Context::userEnabledCuDNNSDP() const {
return enabled_cudnnSDP;
}
void Context::setSDPUseCuDNN(bool e) {
enabled_cudnnSDP = e;
}
void Context::setSDPUseOverrideable(bool e) {
enabled_overrideable = e;
}
bool Context::userEnabledOverrideableSDP() const {
return enabled_overrideable;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
static const char cublas_config_var_name[] = "CUBLAS_WORKSPACE_CONFIG";
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
static const char* const cublas_deterministic_configs[] = { ":4096:8", ":16:8" };
bool Context::checkCuBLASConfigDeterministic() {
bool cublas_config_deterministic = true;
// If using CUDA 10.2 or greater, need to make sure CuBLAS workspace config
// is set to deterministic setting
if (hasCUDART() && (versionCUDART() >= 10020)) {
char* workspace_config = std::getenv(cublas_config_var_name);
cublas_config_deterministic = (workspace_config != nullptr) && (
(strcmp(workspace_config, cublas_deterministic_configs[0]) == 0)
|| (strcmp(workspace_config, cublas_deterministic_configs[1]) == 0)
);
}
return cublas_config_deterministic;
}
void Context::alertCuBLASConfigNotDeterministic() const {
static bool cublas_config_deterministic = checkCuBLASConfigDeterministic();
if (C10_LIKELY(!deterministicAlgorithms() || cublas_config_deterministic)) {
return;
}
auto msg = c10::str(
"Deterministic behavior was enabled with either `torch.use_deterministic_algorithms(True)` or ",
"`at::Context::setDeterministicAlgorithms(true)`, but this operation is not deterministic because ",
"it uses CuBLAS and you have CUDA >= 10.2. To enable deterministic behavior in this ",
"case, you must set an environment variable before running your PyTorch application: ",
cublas_config_var_name, "=", cublas_deterministic_configs[0], " or ",
cublas_config_var_name, "=", cublas_deterministic_configs[1], ". For more information, go to ",
"https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility"
);
if (deterministicAlgorithmsWarnOnly()) {
TORCH_WARN(msg);
} else {
TORCH_CHECK(false, msg);
}
}
bool Context::benchmarkCuDNN() const {
return benchmark_cudnn;
}
void Context::setBenchmarkCuDNN(bool b) {
benchmark_cudnn = b;
}
int Context::benchmarkLimitCuDNN() const {
return benchmark_limit_cudnn;
}
void Context::setBenchmarkLimitCuDNN(int b) {
benchmark_limit_cudnn = b;
}
bool Context::allowTF32CuBLAS() const {
return float32_matmul_precision != at::Float32MatmulPrecision::HIGHEST;
}
void Context::setAllowTF32CuBLAS(bool b) {
float32_matmul_precision = b ? at::Float32MatmulPrecision::HIGH : at::Float32MatmulPrecision::HIGHEST;
}
Float32MatmulPrecision Context::float32MatmulPrecision() const {
return float32_matmul_precision;
}
void Context::setFloat32MatmulPrecision(Float32MatmulPrecision p) {
float32_matmul_precision = p;
}
void Context::setFloat32MatmulPrecision(const std::string &s) {
auto match = [this](const std::string & s_) {
// TODO: consider if CuDNN field needs to also be set for potential future CuDNN ops like multi-headed attention
if (s_ == "highest") {
float32_matmul_precision = at::Float32MatmulPrecision::HIGHEST;
return true;
} else if (s_ == "high") {
float32_matmul_precision = at::Float32MatmulPrecision::HIGH;
return true;
} else if (s_ == "medium") {
float32_matmul_precision = at::Float32MatmulPrecision::MEDIUM;
return true;
}
return false;
};
if (match(s)) { return; }
std::string sl;
std::transform(s.begin(), s.end(), sl.begin(),
[](unsigned char c) -> unsigned char { return std::tolower(c); });
if (match(sl)) { return; }
TORCH_WARN(s, " is not one of 'highest', 'high', or 'medium'; the current"
"setFloat32MatmulPrecision call has no effect.");
}
at::LinalgBackend Context::linalgPreferredBackend() const {
return linalg_preferred_backend;
}
void Context::setLinalgPreferredBackend(at::LinalgBackend b) {
linalg_preferred_backend = b;
TORCH_CHECK((b != at::LinalgBackend::Cusolver) || hasCuSOLVER(),
"Cannot set preferred backend to cuSOLVER if PyTorch has not been compiled with cuSOLVER.");
TORCH_CHECK((b != at::LinalgBackend::Magma) || hasMAGMA(),
"Cannot set preferred backend to MAGMA if PyTorch has not been compiled with MAGMA.");
if (b != at::LinalgBackend::Default) {
TORCH_WARN_ONCE(
"torch.backends.cuda.preferred_linalg_library is an experimental feature. "
"If you see any error or unexpected behavior when this flag is set "
"please file an issue on GitHub."
);
}
}
at::BlasBackend Context::blasPreferredBackend() {
#ifdef USE_ROCM
if (blas_preferred_backend == at::BlasBackend::Cublaslt) {
static const bool hipblaslt_unsupported = []() {
static const std::vector<std::string> archs = {"gfx90a", "gfx940", "gfx941", "gfx942"};
for (auto index: c10::irange(getNumGPUs())) {
if (!detail::getCUDAHooks().isGPUArch(index, archs)) {
TORCH_WARN_ONCE(
"Attempting to use hipBLASLt on an unsupported architecture! "
"Overriding blas backend to hipblas");
return true;
}
}
return false;
}();
if (hipblaslt_unsupported) blas_preferred_backend = at::BlasBackend::Cublas;
}
#endif
return blas_preferred_backend;
}
void Context::setBlasPreferredBackend(at::BlasBackend b) {
#ifdef _MSC_VER
TORCH_WARN_ONCE(
"torch.backends.cuda.preferred_blas_library is an experimental feature. "
"It is not supported on Windows."
);
#else
TORCH_CHECK((b != at::BlasBackend::Cublaslt) || hasCuBLASLt(),
"Cannot set preferred backend to cuBLASLt if PyTorch has not been compiled with cuBLASLt.");
if (b != at::BlasBackend::Cublas) {
TORCH_WARN_ONCE(
"torch.backends.cuda.preferred_blas_library is an experimental feature. "
"If you see any error or unexpected behavior when this flag is set "
"please file an issue on GitHub."
);
}
blas_preferred_backend = b;
#endif
}
bool Context::allowFP16ReductionCuBLAS() const {
return allow_fp16_reduction_cublas;
}
void Context::setAllowFP16ReductionCuBLAS(bool b) {
allow_fp16_reduction_cublas = b;
}
bool Context::allowBF16ReductionCuBLAS() const {
return allow_bf16_reduction_cublas;
}
void Context::setAllowBF16ReductionCuBLAS(bool b) {
allow_bf16_reduction_cublas = b;
}
bool Context::hasMKL() {
#if AT_MKL_ENABLED()
return true;
#else
return false;
#endif
}
bool Context::hasMKLDNN() {
#if AT_MKLDNN_ENABLED()
return true;
#else
return false;
#endif
}
bool Context::hasOpenMP() {
#ifdef _OPENMP
return true;
#else
return false;
#endif
}
bool Context::hasLAPACK() {
#if AT_BUILD_WITH_LAPACK()
return true;
#else
return false;
#endif
}
at::QEngine Context::qEngine() const {
static auto _quantized_engine = []() {
at::QEngine qengine = at::kNoQEngine;
#if defined(C10_MOBILE) && defined(USE_PYTORCH_QNNPACK)
qengine = at::kQNNPACK;
#endif
#if AT_MKLDNN_ENABLED()
qengine = at::kONEDNN;
#endif
#ifdef USE_FBGEMM
if (fbgemm::fbgemmSupportedCPU()) {
/* X86 is enabled if and only if fbgemm is available.
* It combines goodness of fbgemm and onednn by dispatching.
* If onednn not available, always dispatch to fbgemm.
* Make it default qengine for X86 CPU platforms.
*/
qengine = at::kX86;
}
#endif
return qengine;
}();
return quantized_engine.value_or(_quantized_engine);
}
void Context::setQEngine(at::QEngine e) {
const auto& qengines = supportedQEngines();
if (std::find(qengines.begin(), qengines.end(), e) != qengines.end()) {
quantized_engine = e;
return;
}
TORCH_CHECK(false, "quantized engine ", toString(e), " is not supported");
}
const std::vector<at::QEngine>& Context::supportedQEngines() {
static auto supported_qengines = []() {
std::vector<at::QEngine> engines = {};
// Engines are listed in priority order: later one wins
// By default we prefer FBGEMM if we're running on server side
// QNNPACK on server side has some issue, so we disable it by default.
#ifdef C10_MOBILE
engines.push_back(at::kNoQEngine);
#ifdef USE_PYTORCH_QNNPACK
engines.push_back(at::kQNNPACK);
#endif
#else // C10_MOBILE
#ifdef USE_PYTORCH_QNNPACK
engines.push_back(at::kQNNPACK);
#endif
engines.push_back(at::kNoQEngine);
#endif // C10_MOBILE
#if AT_MKLDNN_ENABLED()
engines.push_back(at::kONEDNN);
#endif
#ifdef USE_FBGEMM
if (fbgemm::fbgemmSupportedCPU()) {
engines.push_back(at::kX86);
// The X86 qengine is available if and only if FBGEMM is available
engines.push_back(at::kFBGEMM);
}
#endif
return engines;
}();
return supported_qengines;
}
bool Context::isXNNPACKAvailable() {
#ifdef USE_XNNPACK
return true;
#else
return false;
#endif
}
void Context::setCheckSparseTensorInvariants(bool e) {
enable_sparse_tensor_invariant_checks = e;
}
bool Context::checkSparseTensorInvariants() const {
return enable_sparse_tensor_invariant_checks;
}
bool Context::releaseWeightsWhenPrepacking() const {
return release_original_weights;
}
void Context::setReleaseWeightsWhenPrepacking(bool e) {
release_original_weights = e;
}
bool Context::setFlushDenormal(bool on) {
return at::cpu::set_flush_denormal(on);
}
Allocator* getCPUAllocator() {
return c10::GetCPUAllocator();
}
// override_allow_tf32_flag = true
// means the allow_tf32 flags are overridden and tf32 is force disabled
// override_allow_tf32_flag = false
// means the original allow_tf32 flags are followed
thread_local bool override_allow_tf32_flag = false;
NoTF32Guard::NoTF32Guard() {
if (!override_allow_tf32_flag) {
changed = true;
override_allow_tf32_flag = true;
}
}
NoTF32Guard::~NoTF32Guard() {
if (changed) {
override_allow_tf32_flag = false;
}
}
bool NoTF32Guard::should_disable_tf32() {
return override_allow_tf32_flag;
}
// Ops can query this flag to know they are in the backward pass.
// This information can be used, for example, to select implementations
// with different numerical or performance characteristics.
// See https://pytorch.org/docs/stable/notes/numerical_accuracy.html for details.
thread_local bool rocm_is_backward_pass;
ROCmBackwardPassGuard::ROCmBackwardPassGuard() {
rocm_is_backward_pass = true;
}
ROCmBackwardPassGuard::~ROCmBackwardPassGuard() {
rocm_is_backward_pass = false;
}
bool ROCmBackwardPassGuard::is_backward_pass() {
return rocm_is_backward_pass;
}
bool Context::areVmapFallbackWarningsEnabled() const {
return display_vmap_fallback_warnings_;
}
void Context::setDisplayVmapFallbackWarnings(bool enabled) {
display_vmap_fallback_warnings_ = enabled;
}
void Context::setDefaultMobileCPUAllocator() {
TORCH_CHECK(prev_allocator_ptr_ == nullptr,
"Already within the scope of another non-default cpu allocator."
"Cannot set another allocator.");
// Setting the priority high to make sure no other allocator gets used instead of this.
prev_allocator_ptr_ = c10::GetCPUAllocator();
c10::SetCPUAllocator(c10::GetDefaultMobileCPUAllocator(), /*priority*/ 100);
}
void Context::unsetDefaultMobileCPUAllocator() {
TORCH_CHECK(prev_allocator_ptr_ != nullptr,
"setDefaultMobileCPUAllocator must have been called "
"before unsetDefaultMobileCPUAllocator.");
// Setting the priority high to make sure no other allocator gets used instead of this.
c10::SetCPUAllocator(prev_allocator_ptr_ , /*priority*/ 100);
prev_allocator_ptr_ = nullptr;
}
bool Context::allowFP16ReductionCPU() const {
return allow_fp16_reduction_cpu;
}
void Context::setAllowFP16ReductionCPU(bool b) {
if ( b && !allow_fp16_reduction_cpu) {
// Check that CPU supports fp16 reductions
#if defined(__aarch64__) && !defined(C10_MOBILE)
if (!cpuinfo_initialize() || !cpuinfo_has_arm_fp16_arith())
#else
if (true)
#endif
throw std::runtime_error("Float16 arithmetic is not supported by the CPU!");
}
allow_fp16_reduction_cpu = b;
}
} // namespace at